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This expository note describes how to apply the method of maximum likelihood to estimate the
parameters of the “q-exponential” distributions introduced by Tsallis and collaborators. It also
describes the relationship of these distributions to the classical Pareto distributions.

In a series of papers beginning with [1], Constantino
Tsallis and collaborators introduced what have come to
be called q-exponential probability distributions. These
can be defined through their “complementary” (“upper”,
“upper cumulative”) distribution functions, also called
“survival” functions:

Pq,κ(X ≥ x) =
(

1− (1− q)x
κ

)1/(1−q)

(1)

Tsallis et al. proposed these distributions to handle
statistical-mechanical systems with long-range interac-
tions, necessitating (it is claimed) a non-extensive gen-
eralization of the ordinary Gibbs-Shannon entropy. Fol-
lowing Jaynes’s procedure of maximizing an entropy sub-
ject to constraints on expectation values [2], they got the
q-exponential distributions, in which κ enforces the con-
straints, and q measures the departure from extensivity,
Boltzmann-Gibbs statistics being recovered as q → 1.

Tsallis’s ideas about non-extensive entropy and its pos-
sible applications, in and out of statistical mechanics,
have attracted intense (not to say “extensive”) interest
in physics; the bibliography at http://tsallis.cat.
cbpf.br/biblio.htm has over 2000 entries. They are
also quite controversial (see, e.g., Refs. [3, 4, 5, 6, 7, 8],
the replies by Tsallis and others, and in some cases the
replies to the replies). Whether or not the critics are
correct, however, q-exponentials are still valid probabil-
ity distributions, and can usefully describe some empiri-
cal phenomena. To this end, in a recent paper Douglas
R. White et al. pose the problem of estimating the pa-
rameters q and κ from data by the method of maximum
likelihood [9]. This note solves that problem.

I first reparameterize Eq. 1 to simplify estimation and
emphasize links to Pareto distributions. I then rehearse
the math of finding the maximum likelihood estima-
tor (MLE) for the q-exponential distribution, discussing
its accuracy and precision, and adjustments for data in
which samples below a fixed threshold are all dropped
(“censoring”). I compare maximum-likelihood estimates
to those found by the current practice of curve-fitting; the
latter are inferior. Finally, I discuss testing the assump-
tion that the data are q-exponentially distributed. Code
implementing the MLE for q-exponentials is available at
http://bactra.org/research/tsallis-MLE/, written
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in R, a free, open-source programming language for sta-
tistical computing (http://www.r-project.org/). This
code also calculates probabilities and quantiles, generates
random numbers, etc.

a. Reparameterization as Generalized Pareto Distri-
butions While it is possible to find the MLE for q-
exponentials in the form given in Eq. 1, the algebra is
needlessly messy. It is simpler to reparameterize, and
change back to the original parameter system at the end,
if desired. (Under a 1-1 change of parameters, an MLE
for the old parameters must, under the transformation,
be an MLE for the new parameters, and vice versa.)
Thus, define the new parameters θ ≡ − 1

1−q and σ ≡ θκ,
from which the original parameters can be recovered:

q = 1 +
1
θ
, κ =

σ

θ
(2)

In the new parameter system, the survival function be-
comes

Pθ,σ(X ≥ x) = (1 + x/σ)−θ (3)

Hence the probability density is

pθ,σ(x) =
θ

σ
(1 + x/σ)−θ−1 (4)

The code mentioned above uses both parameterizations.
Y has a Pareto distribution with scaling exponent α

and cut-off y0 if p(y) = 0 when y < y0, and otherwise
p(y) ∝ (y/y0)

−α−1. Hence when X has a q-exponential
distribution, 1 + x/σ has a Pareto distribution with cut-
off 1 and scaling exponent θ. Following the classification
given in Arnold’s monograph on Pareto distributions [10],
this is an instance of a “type II generalized Pareto”, often
used in operations research on failure times and other
reliability problems, the standard form of which is P (X ≥
x) = [1 + (x− µ)/σ]−α. The q-exponentials come from
taking µ = 0 and α = θ; the ordinary Pareto distribution
is recovered by taking σ = x0 and µ = σ. According
to Ref. [10, pp. 13–14, 208–210], the type II generalized
Pareto was introduced in Refs. [11, 12, 13], and the latter
two also derived the MLE.1 The calculations below are a
special case of their results, except for the treatment of
censoring, which may be new.

1 Arnold [10, p. 48] observes that a mixture of exponentials can
produce a type II generalized Pareto. If the distribution of X−µ,
given Z, is an exponential with mean σ/Z, and Z has a Γ(α, 1)
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b. Derivation of the MLE for q-Exponentials Un-
der the q-exponential model with parameters θ, σ, the
log-probability density of a sequence of independent,
identically-distributed samples X1 = x1, X2 = x2,
. . .Xn = xn, for short Xn

1 = xn1 , is

log pθ,σ(xn1 ) = −n log σ + n log θ (5)

−(θ + 1)
n∑
i=1

log 1 + xi/σ

≡ `(θ, σ) , (6)

the log-likelihood of the parameter combination θ, σ.
To find the MLEs, take the first derivatives of the log-

likelihood with respect to the parameters and set them
equal to zero. First, the shape parameter θ:

∂`

∂θ
=

n

θ
−

n∑
i=1

log 1 + xi/σ (7)

θ̂ = n

[
n∑
i=1

log 1 + xi/σ

]−1

(8)

Similarly for the scale parameter σ:

∂`

∂σ
= −n

σ
+
θ + 1
σ2

n∑
i=1

xi
1 + xi/σ

(9)

σ̂ =
θ + 1
n

n∑
i=1

xi
1 + xi/σ̂

(10)

Eqs. 8 and 10 give the MLEs for θ and σ, respectively,
if the other parameter is known. The former gives the
value of θ̂ explicitly2, while the latter does so implic-
itly, through the solution of an equation. Implicitly-
defined MLEs like this occur in several generalizations
of the exponential distribution, such as the ones known
to physicists as “stretched exponentials” and to statisti-
cians as “Weibull distributions” (after the physicist who
introduced them) [17, ch. 20]. The lack of a closed form
is only a small annoyance, since such equations can gen-
erally be rapidly solved numerically, to a precision much
smaller than the uncertainty inherent in the data.

If neither θ nor σ is known (i.e., neither q nor κ), then
the simultaneous solution of Eqs. 8 and 10 gives the joint
maximum likelihood estimator. Substituting the former
equation into the latter gives a single equation in σ̂ and
the data:

σ̂ =
1
n

1 + n

[
n∑
i=1

log 1 + xi/σ̂

]−1
 n∑

i=1

xi
1 + xi/σ̂

(11)

distribution, then X has a type II generalized Pareto distribu-
tion with parameters µ, σ and α. He assigns priority for this
result to [11]. It would appear to be equivalent to C. Beck’s
“superstatistics” approach to Tsallis statistics (reviewed in [14]).

2 Cf. the well-known MLE for the scaling exponent in a Pareto
distribution [10, 15, 16], α̂ = n/

ˆPn
i=1 log x/x0

˜
.

This does not seem to simplify, but, again, can be solved
numerically. (Eq. 11 is transcendental, whereas Eq. 10
is rational, but no worse than the equation for the MLE
of the Weibull distribution, which also contains a sum
of logarithms, etc.) Substituting the solution into Eq. 8
gives θ̂, and then Eq. 2 give q̂, κ̂.

c. Accuracy and Precision of the MLE An estima-
tor ψ̂(Xn

1 ) of a parameter ψ of a statistical distribution
is consistent when ψ̂ converges in probability to ψ, i.e.,
for any ε > 0 and any δ > 0, for sufficiently large n,
P

(∥∥∥ψ̂(Xn
1 )− ψ

∥∥∥ ≥ ε
)
≤ δ. In other words, a consistent

estimator is “probably (1−δ) approximately (ε) correct”,
for arbitrarily small δ and ε. Under quite general condi-
tions, met here, maximum likelihood estimators are con-
sistent [18].

Consistency alone is not enough to calculate standard
errors or confidence regions. However, under conditions
only mildly more restrictive than those needed for con-
sistency, MLEs are asymptotically normal and unbiased.
That is, ψ̂(Xn

1 )− ψ has, for large n, a multidimensional
Gaussian distribution with mean zero and covariance ma-
trix (1/n)I−1(ψ), where I(ψ) is the Fisher information
matrix,

Iij(ψ) ≡ −
∫
∂2 log pψ(x)
∂ψi∂ψj

pψ(x)dx (12)

By the famous Cramér-Rao inequality [19], any consis-
tent unbiased estimator has a covariance at least equal
to I−1(ψ); the MLE is asymptotically efficient because it
attains this bound. Since the true value of ψ is unknown,
I(ψ) cannot give us standard errors or confidence regions,
but I(ψ̂) is a consistent estimator of I(ψ), and can be
used for those purposes. Another consistent estimator of
the Fisher information is the observed information ma-
trix, Jij(ψ) ≡ −n−1∂2`(ψ)/∂ψi∂ψj , and J(ψ̂) also gives
asymptotically-correct error estimates. Ref. [20] treats
these standard results in detail.

For q-exponential distributions, it is easy to verify that
the standard conditions for the asymptotic normality of
the MLE hold. In the θ, σ parameterization, simple but
lengthy calculus yields

I(θ, σ) =

[
1
θ2 − 1

(θ+1)σ

− 1
(θ+1)σ

θ
σ2(θ+2)

]
(13)

Either I(θ̂, σ̂) or the observed information matrix could
be used to find standard errors and Gaussian confidence
regions. Propagation of errors can then carry these to
estimates on q and κ.

For small samples, asymptotic approximations should
be avoided in favor of parametric bootstrapping [21, sec.
9.11]. Having obtained an estimate ψ̂ = ψ̂(xn1 ), make
up a “bootstrap” sample of random numbers Y1, Y2, ...Yn
with the density pψ̂, and calculate ψ̂(Y n1 ). The distribu-
tion of ψ̂(Y n1 ) − ψ̂ is approximately the same as that of
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ψ̂(Xn
1 )−ψ, so by taking many bootstrap samples one can

estimate standard errors and confidence regions, without
making Gaussian approximations. (For more on boot-
strapping, see, e.g., [21, ch. 8].) The code mentioned
above finds bootstrapped biases, standard errors and con-
fidence intervals.

d. Censored Data In many applications, only mea-
surements exceeding some known lower threshold x0 are
available, i.e., only values of X ≥ x0 become data. Pa-
rameters estimation from such left-censored data must
take account of the threshold. Specifically, rather than
maximizing the unconditional likelihood, `(θ, σ), one
should maximize the likelihood conditional on being in
the right tail, `C(θ, σ, x0). It is easily shown that the
censored density is 0 when x < x0, and otherwise

pθ,σ,x0(x) = (1 + x0/σ)θpθ,σ(x) (14)

pθ,σ(x) being given by Eq. 4. The censored likelihood
thus equals `(θ, σ) plus a term involving only θ, σ and
x0:

`C(θ, σ, x0) = `(θ, σ) + nθ log 1 + x0/σ (15)

The likelihood estimating equations become

θ̂C = n

[
n∑
i=1

log
1 + xi/σ

1 + x0/σ

]−1

(16)

σ̂C = −θ x0

1 + x0/σ̂C
+
θ + 1
n

n∑
i=1

xi
1 + xi/σ̂C

(17)

Eqs. 16 and 17 reduce to Eqs. 8 and 10 when x0 = 0
(no censoring), and can be solved in the same way. The
MLE remains consistent, and asymptotically normal and
efficient. The Fisher information matrix, after an even
longer calculation, ends up being I(θ, σ + x0); explicitly,

IC(θ, σ, x0) =

[
1
θ2 − 1

(θ+1)(σ+x0)

− 1
(θ+1)(σ+x0)

θ
(σ+x0)

2(θ+2)

]
(18)

Bootstrapping, however, is even more strongly recom-
mended than with uncensored data. Simulated values
should be drawn from the tail only.

e. Comparison to Curve-Fitting Hitherto, attempts
to estimate the parameters of q-exponential distributions
have been based on curve-fitting. (Ref. [22] is an unusu-
ally careful example.) Taking the log of both sides of Eq.
3,

logPθ,σ(X ≥ x) = −θ log (1 + x/σ) (19)

Write Sn(x) for the empirical distribution function, i.e.,
the fraction of points in x1, x2, . . . xn which are ≥ x.
Then we expect that, at least for large sample sizes n,

logSn(xi) ≈ −θ log (1 + xi/σ) (20)
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FIG. 1: (Color online) Comparison of estimates of q using the
MLE and curve-fitting. All data generated using q = 4/3, κ =
200/3 (θ = 3, σ = 200), with varying sample sizes, and 500
independent replications are each sample size. Curve-fitting
estimates are plotted in black, displaced slightly to the left,
and MLEs in blue, displaced to the right. Solid bars show
the 5th and 95th percentiles of sample estimates, circles the
median estimate, and dashed lines the sample extrema. Note
that the MLE is always less biased and more precise.

for all xi. A least-squares approach to estimating the
parameters minimizes the squared difference between the
two sides of Eq. 20, summed over all xi, i.e.,

(θ̃, σ̃) ≡ argmin
θ,σ

n∑
i=1

(
logSn(xi) + θ log

(
1 +

xi
σ

))2

(21)
It is possible to show that this estimator is consistent.

The analogous procedure for Pareto distributions was
the one originally used by Pareto in the 1890s [10], and
still widespread in physics. For Pareto distributions,
however, statisticians have known since the 1950s that
such estimation-by-regression is much more biased, and
much less precise, than the maximum likelihood estima-
tor [10, 15]. (In particular, the standard errors are much
larger than blind use of the ordinary regression formu-
las suggest.) The same is true of the least-squares esti-
mate of q-exponentials (Fig. 1). Fitting curves to binned
estimates of the probability density, rather than to the
cumulative distribution, is even less accurate. Neither
approach should be used.

f. Validation All the claims of consistency, effi-
ciency, etc., made above assume that the data really do
come from a q-exponential distribution. In statistical ter-
minology, the assumption is that the q-exponential model
is correctly specified, as opposed to being mis-specified.
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In applications to empirical data, it is crucial to check
this assumption. Rigorous mis-specification tests are too
complicated to go into here [23, 24], but some remarks
are in order.

The most common test of specification in the literature
on Tsallis statistics is to look at the fraction, R2, of the
variance in logSn accounted for by the fitted distribu-
tional curve. Unfortunately, this popularity is not based
on any reliability; it is easy to construct examples where
1 + x/σ has, say, a log-normal distribution, but R2 is al-
ways close to 1. Rather than looking at R2, one should ei-
ther test q-exponentials against alternative distributions
such as the Pareto, the log-normal, etc., or do general
goodness-of-fit tests, adjusting for the way parameters
are estimated from the data [21, ch. 10]. The latter must
be interpreted with caution: failing a goodness-of-fit test
provides strong evidence against a model, but passing one
may give only very weak evidence in its favor, depending
on the severity of the test [25].

Two heuristic checks for mis-specification deserve men-
tion. One compares the parametric bootstrap, described
above, with a non-parametric bootstrap, in which the val-
ues Y1, . . . Yn come from resampling the data x1, . . . xn
with replacement, not from the fitted distribution. If
parametric and non-parametric bootstrap estimates of

bias, standard error, etc., differ substantially, this is a
sign that the model is mis-specified. Similarly, if the ex-
pected Fisher information at the MLE, I(θ̂, σ̂) is very
different from the observed information, J(θ̂, σ̂), this
again suggests the statistical model poorly describes the
data-generating process. The comparison of informa-
tion matrices can be turned into a formal test for mis-
specification [23].

Conclusion Tsallis q-exponentials are legitimate pos-
sible models of heavy-tailed data. Under other names,
they have been so used in operations research and statis-
tics for half a century, without any entropic origin story.
To model data with q-exponentials, their parameters
must be estimated accurately. The estimators currently
used by physicists are inferior to the MLE, which is
asymptotically efficient. If physicists want to describe
data with q-exponentials, they should stop fitting curves
and start maximizing likelihoods. Whether using Tsal-
lis statistics is a good idea in the first place is another
matter, beyond the scope of this note.
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