Restoration of Auditory Nerve Synapses in Cats by Cochlear Implants

D. K. Ryugo, E. A. Kretzmer, J. K. Niparko

Congenital deafness results in abnormal synaptic structure in endings of the auditory nerve. If these abnormalities persist after restoration of auditory nerve activity by a cochlear implant, the processing of time-varying signals such as speech would likely be impaired. We stimulated congenitally deaf cats for 3 months with a six-channel cochlear implant. The device used human speech-processing programs, and cats responded to environmental sounds. Auditory nerve fibers exhibited a recovery of normal synaptic structure in these cats. This rescue of synapses is attributed to a return of spike activity in the auditory nerve and may help explain cochlear implant benefits in childhood deafness.

In deaf humans, cochlear implants have restored hearing for many but not all recipients. The clinical consensus is that oral language development before deafness leads to the best outcomes. Among congenitally deaf children, the younger the age of implant activation, the better the aural language results (1). These clinical experiences imply that uncorrected congenital deafness introduces irreversible abnormalities in the developing central nervous system. In mammalian models of congenital deafness, the synaptic structure of auditory nerve endings is abnormal (2–4). Could the status of auditory nerve synapses represent an important link to the success or failure of cochlear implants?

One defect in the auditory nerve of congenitally deaf animals occurs at a large axosomatic ending of myelinated auditory nerve fibers called the endbulb of Held (2–4). Endbulbs have a calyxlike appearance that is formed from the main axon as several granular branches that arborize repeatedly to enclose the postsynaptic cell in a nest of en passant swellings and terminal boutons (5). They transmit signals from the auditory nerve fiber to the postsynaptic cell with a high degree of fidelity (6, 7) and are implicated in the pathways that process the temporal features of sound (8, 9). Congenitally deaf animals exhibit endbulbs with marked reduction in their branching (3, 10). Moreover, they contain fewer synaptic vesicles, and postsynaptic densities are longer and straighter (2, 3). These structural abnormalities have been associated with transmission irregularities at the synapse of endbulbs (11, 12) that may underlie loss of temporal resolution of midbrain (13) and cortical (14) neurons in neonatally deafened cats.

Electrical stimulation in deaf cats has resulted in improvements in temporal processing at the level of the auditory cortex (15) and inferior colliculus (16). Our goal was to test whether such benefits might be mediated through “rescue” of endbulb synapses. We sought to determine what happened to these synapses when spike activity was reintroduced to the auditory nerve. The synaptic status in implanted deaf animals may yield insights into the beneficial intervention effects reported for children who undergo implantation at a young age (17–19).

We compared auditory nerve endings in the cochlear nucleus of congenitally deaf cats fitted with a cochlear implant (n = 3) with those of normal-hearing cats (n = 3) and congenitally deaf cats (n = 4). Complete deafness of the auditory nerve for the congenitally deaf cats was verified by the absence of acoustically evoked brainstem responses. Congenitally deaf cats were implanted at 2.5, 3, and 5 months of age. Following a 2- to 3-week recovery, implant hardware was programmed and the cats received stimulation for nearly 8 hours per day, 5 days per week. Electrically evoked compound action potentials (ECAPs) (Fig. 1) and behavioral responses were monitored monthly to verify continued function of each electrode and to ensure that signals were being delivered to the nerve (20). We were confident that environmental sounds had biological importance to the animals, because we could routinely “call” implanted cats for a food reward. After 3 months of stimulation, cats were euthanized by overdose of sodium pentobarbital and transcardially perfused with buffered fixative, and brain tissue was harvested for light and electron microscopic analysis. Tissue sections of the cochlear nucleus were histologically prepared using standard procedures for examination with an electron microscope (2).

In the anteroventral cochlear nucleus, auditory nerve synapses have a readily identifiable ultrastructural appearance (21, 22). Endbulbs contain clear, round synaptic vesicles (50 nm in diameter) and exhibit multiple asymmetric membrane thickenings with the somata of spherical bushy cells in the cochlear nucleus (Fig. 2). These membrane thickenings are called postsynaptic densities, contain transmitter receptors, and are assumed to represent the synaptic release sites. They are punctate, marked by dense material in the cytoplasm, and arched outward into the presynaptic endbulb. When individual synapses were followed through serial sections and reconstructed using computer software, their discrete nature was revealed by observing the surface of the postsynaptic...
were reconstructed through serial sections, they received 3 months of electrical stimulation from a cochlear implant. All micrographs were collected from cats that were 6 months of age. The hearing and treated cats exhibit synapses that are punctate, curved, and accompanied by nearby synaptic vesicles (asterisks). In contrast, the synapses from untreated deaf cats are large, flattened, and mostly void of synaptic vesicles (arrowheads). Scale bar, 0.5 μm.

Fig. 2. Electron micrographs of endbulb (EB) synapses from (A) a normal-hearing cat, (B) a congenitally deaf cat that was untreated, and (C) a congenitally deaf cat that received 3 months of electrical stimulation from a cochlear implant. All micrographs were collected from cats that were 6 months of age. The hearing and treated cats exhibit synapses that are punctate, curved, and accompanied by nearby synaptic vesicles (asterisks). In contrast, the synapses from untreated deaf cats are large, flattened, and mostly void of synaptic vesicles (arrowheads). Scale bar, 0.5 μm.

Fig. 3. Postsynaptic densities from endbulbs of Held, indicative of release sites, were reconstructed through serial sections using three-dimensional software and then rotated. These views present the surface of the bushy cell membrane that lies under the auditory nerve ending. The shaded and lined regions represent the reconstructed synapses. Each horizontal line indicates a single ultrathin section. The congenitally deaf cats exhibited hypertrophied synapses, whereas the stimulated deaf cats exhibited synapses having normal shapes and distributions.

Fig. 3. Postsynaptic densities from endbulbs of Held, indicative of release sites, were reconstructed through serial sections using three-dimensional software and then rotated. These views present the surface of the bushy cell membrane that lies under the auditory nerve ending. The shaded and lined regions represent the reconstructed synapses. Each horizontal line indicates a single ultrathin section. The congenitally deaf cats exhibited hypertrophied synapses, whereas the stimulated deaf cats exhibited synapses having normal shapes and distributions.

The functional importance of synaptic recovery in auditory nerve fibers is that temporal processing is improved in the chronically stimulated cats. Preservation of the “timing pathway” through the endbulb-bushy cell circuit would support the precise transmission of temporal cues within the auditory signal. Because the cochlear nucleus gives rise to all ascending auditory pathways, the normalization of synapses is hypothesized to enable the faithful transmission of auditory signals throughout the system. Temporal resolution of neurons in the inferior colliculus demonstrated impaired frequency following of neurons in neonatally deafened cats. This impaired frequency following improved after electrical stimulation of the cochlea (16). The critical nature of temporal resolution in facilitating speech recognition is underscored by studies that show speech recognition based on temporal cues while spectral content is systematically degraded (33). From the cochlear nucleus, high-fidelity temporal features of sound can be used to mediate more complex functions occurring in auditory cortex (15, 34, 35). It is logical to infer that deafness results in synaptic abnormalities in auditory nerve fibers of congenitally deaf humans, similar to those found in other mammals. We hypothesize that the changes observed after cochlear implantation at this crucial synapse enable the development of integrative and cognitive brain functions reflected in aural and oral communication in deaf children (1, 17–19, 36, 37).

References and Notes
In response to a microbial challenge, activated and the phagocytosis of microorganisms (ing the secretion of proinflammatory cytokines

A Role for the Phagosome in Cytokine Secretion

Rachael Z. Murray, Jason G. Kay, Daniele G. Sangermani, Jennifer L. Stow*

Membrane traffic in activated macrophages is required for two critical events in innate immunity: proinflammatory cytokine secretion and phagocytosis of pathogens. We found a joint trafficking pathway linking both actions, which may economize membrane transport and augment the immune response. Tumor necrosis factor α (TNFα) is trafficked from the Golgi to the recycling endosome (RE), where vesicle-associated membrane protein 3 mediates its delivery to the cell surface at the site of phagocytic cup formation. Fusion of the RE at the cup simultaneously allows rapid release of TNFα and expands the membrane for phagocytosis.

Both of these actions require substantial up-regulation of protein trafficking and deployment of membrane to the cell surface. TNFα, the earliest and most potent proinflammatory cyto-

In response to a microbial challenge, activated macrophages initiate multiple actions, including the secretion of proinflammatory cytokines and the phagocytosis of microorganisms (1).

Fig. 1. VAMP3 up-regulation and function as the R-SNARE for TNFα secretion. (A) VAMP3 protein expression: up-regulation by LPS compared with other relevant SNAREs and in IFN-primed cells. WB, Western blotting. (B) SNARE partners coimmunoprecipitated (IP) with VAMP3 or VAMP8 are detected by immuno-

Both of these actions require substantial up-regulation of protein trafficking and deployment of membrane to the cell surface. TNFα, the earliest and most potent proinflammatory cyto-

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia.

*To whom correspondence should be addressed. E-mail: j.stow@imb.uq.edu.au

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5753/1490/DC1
Materials and Methods Figs. S1 and S2 Tables S1 and S2 Movie S1

26 August 2005; accepted 28 October 2005 10.1126/science.1119419