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Lars Onsager, a giant of twentieth-century science and the 1968 Nobel Laureate in Chemistry,
made deep contributions to several areas of physics and chemistry. Perhaps less well known is
his ground-breaking work and lifelong interest in the subject of hydrodynamic turbulence. He wrote
two papers on the subject in the 1940s, one of them just a short abstract. Unbeknownst to Onsager,
one of his major results was derived a few years earlier by A. N. Kolmogorov, but Onsager’s work
contains many gems and shows characteristic originality and deep understanding. His only full-length
article on the subject in 1949 introduced two novel ideas—negative-temperature equilibria for
two-dimensional ideal fluids and an energy-dissipation anomaly for singular Euler solutions—that
stimulated much later work. However, a study of Onsager’s letters to his peers around that time, as
well as his private papers of that period and the early 1970s, shows that he had much more to say
about the problem than he published. Remarkably, his private notes of the 1940s contain the essential
elements of at least four major results that appeared decades later in the literature: �1� a mean-field
Poisson-Boltzmann equation and other thermodynamic relations for point vortices; �2� a relation
similar to Kolmogorov’s 4 /5 law connecting singularities and dissipation; �3� the modern physical
picture of spatial intermittency of velocity increments, explaining anomalous scaling of the spectrum;
and �4� a spectral turbulence closure quite similar to the modern eddy-damped quasinormal
Markovian equations. This paper is a summary of Onsager’s published and unpublished contributions
to hydrodynamic turbulence and an account of their place in the field as the subject has evolved
through the years. A discussion is also given of the historical context of the work, especially of
Onsager’s interactions with his contemporaries who were acknowledged experts in the subject at the
time. Finally, a brief speculation is offered as to why Onsager may have chosen not to publish several
of his significant results.
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I. INTRODUCTION

Lars Onsager �see Fig. 1� is recognized as a giant of
twentieth-century science. His deep contributions to
many areas of physics and chemistry are widely appreci-
ated. His founding work on the thermodynamics of irre-
versible processes and a key result, the reciprocal rela-
tions for linear transport coefficients �Onsager, 1931a,
1931b�, won him the Nobel Prize in Chemistry in 1968.
His exact solution for the partition function of the two-
dimensional Ising model �Onsager, 1944� is recognized
as a tour de force of mathematical physics, which helped
to usher in the modern era of research in critical phe-
nomena. Among the other celebrated contributions are
his work on liquid helium, including quantization of cir-
culation �Onsager, 1949a, 1949d� and off-diagonal long-
range order �Penrose and Onsager, 1956�, his semiclassi-
cal theory of the de Haas–van Alphen effect in metals
�Onsager, 1952�, his entropic theory of transition to nem-
atic order for rod-shaped colloids �Onsager, 1949c�, and
the reaction field in his theory of dielectrics �Onsager,
1936�. Of course, his largest body of research was on
corrections and extensions of the Debye-Hückel theory
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of electrolytes, from his first scientific paper at age 23
�Onsager, 1926� to those in the last year of his life �Hub-
bard and Onsager, 1977; Onsager and Chen, 1977; On-
sager and Kim, 1977; Onsager et al., 1977�.

Perhaps less well known among physicists is Onsager’s
ground-breaking work and lifelong interest in the sub-
ject of hydrodynamic turbulence. In fact, classical fluid
mechanics was a part of much of his research, including
the work on electrolyte solutions �Onsager, 1926�, vis-
cosity of colloidal solutions �Onsager, 1932�, and theory
of liquid diffusion �Onsager, 1945d�. Onsager’s earliest
recorded encounter with fluid turbulence was a paper in
1939 on convection in gases between concentric vertical
cylinders �Onsager and Watson, 1939�. This was an out-
growth of his theoretical work on isotope separation by
thermal diffusion �Onsager, 1939b; Onsager et al., 1939�.
Experiments on isotope separation in an apparatus with
this geometry revealed the onset of turbulence at unex-
pectedly low Reynolds numbers, thus reducing the effi-
ciency of the separation method. Onsager and Watson
�1939� gave a simple theory for the scaling of the critical
Reynolds number to explain this early onset of turbu-
lence.

In the following decade Onsager published two semi-
nal works on the subject of fully developed turbulence.
The first in 1945 was just a short abstract �Onsager,
1945c� of a contributed talk, which he gave at a meeting
of the Metropolitan Section of the American Physical
Society held on November 9 and 10, 1945, at Columbia
University. Here, Onsager predicted an energy spectrum
for velocity fluctuations that rolls off as the −5/3 power

of the wave number. The published abstract appeared a
few years after, but entirely independently of, the now-
famous trilogy of papers by Kolmogorov �1941a, 1941b,
1941c� proposing his similarity theory of turbulence.
Therefore Onsager is often credited as a codiscoverer of
the Kolmogorov theory along with Kolmogorov’s stu-
dent, Obukhov �1941a, 1941b�, and with Heisenberg
�1948� and von Weizsäcker �1948�. The 1945 abstract was
followed a few years later by Onsager’s only full-length
article on the subject of fluid turbulence �Onsager,
1949d�. The paper is based on his address at the first
International Union of Pure and Applied Physics
�IUPAP� conference on statistical mechanics in Flo-
rence, Italy, held May 17–20, 1949. This conference is
famous for Onsager’s announcement—as discussion
remarks—of two other spectacular results: the quantiza-
tion of circulation in superfluid helium and the critical
exponent for spontaneous magnetization in the two-
dimensional �2D� Ising model. The first result was inde-
pendently rediscovered by Feynman �1955�, while a
proof of the second was later published by Yang �1952�.
These events have passed into the folklore of statistical
physics.

It may be less widely appreciated that Onsager’s talk
on statistical hydrodynamics at the Florence conference
introduced two highly innovative ideas in the subject of
fluid turbulence, in addition to lucidly reviewing the
Kolmogorov theory. The first idea was a theory on the
spontaneous formation of large-scale, long-lived vortices
in 2D flows, explaining them as a consequence of equi-
librium statistical mechanics at negative absolute tem-
perature. The second was a theory on the anomalous
rate of energy dissipation in three-dimensional �3D� tur-
bulence based upon conjectured singularities of the in-
compressible Euler equation. These ideas did not seem
to excite much attention during the conference, perhaps
because turbulence was not foremost in the minds of
most participants. Furthermore, Onsager’s presentation
had a typical spare elegance, dense with deep insights,
and decidedly cryptic. Only over a period of several de-
cades have his ideas been pursued, extended, and re-
fined by various researchers. Onsager never published
again on the subject.

However, Onsager made greater inroads into the
theory of turbulence than he ever fully made public. Our
studies of the historical sources presented here show
that he obtained at least four results, new in the 1940s,
which could have been made the basis of major publica-
tions. The documents containing these remarkable re-
sults are Onsager’s typewritten letters to contemporaries
and his own private, handwritten notes. For whatever
reasons, the results in these documents were never pub-
lished and were only rediscovered decades later by oth-
ers. In addition, there are several rather mysterious and
incompletely understood ideas sketched in Onsager’s
notes that may still bear some fruit.

It is the purpose of this article to review Onsager’s
work on turbulence. We shall discuss the contents of his
two published articles and describe some of the later
developments of his seminal ideas expounded there.

FIG. 1. Lars Onsager �1903–1976�, circa 1945. Courtesy
of Theoretical Physics Group, Norges Teknisk-Natur-
vitenskapelige Universitet �NTNU�.

88 G. L. Eyink and K. R. Sreenivasan: Onsager and the theory of hydrodynamic turbulence

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



Our main focus, however, will be the unpublished
sources. These give a fascinating view into the mind of a
scientific genius at work and still have a pedagogical
value in the subject, even after decades of subsequent
development in the field. Our study should therefore be
of interest not only to turbulence experts and to histori-
ans of science, but also to working physicists who are
curious to learn some of the basic facts of this intriguing
subject of classical physics. Those who wish to know
more may consult the monograph of Frisch �1995� or a
more recent mathematical review by Robert �2003�.
Readers interested in Onsager’s broader scientific con-
tributions will benefit from perusing the Collected Works
of Lars Onsager �Hemmer et al., 1996�. Papers on the
varied topics in this collection are introduced by differ-
ent working scientists, those on turbulence by Chorin
�1996�. Attention must also be drawn to the special issue
of Journal of Statistical Physics �Lebowitz, 1995� dedi-
cated to Onsager’s life and work—in particular to the
delightful biographical essay by Longuet-Higgins and
Fisher �1995�.

II. SOURCE MATERIALS

Before we begin, we briefly remark on the historical
sources. They are the letters that Onsager sent to his
professional colleagues in 1945, and his own private,
handwritten notes.

The letters that Onsager exchanged with L. Pauling,
C.-C. Lin, and T. von Kármán �see Fig. 2� have been
preserved in the Caltech archive, “Theodore von
Kármán Papers, 1871–1963,” under Personal Correspon-
dence. In particular, Box 18, Folders 22 and 23, of that
collection contains letters between von Kármán and his
former Ph.D. student Lin, in the period 1942–1947,
along with other related correspondence. Also, Folder 8
of Box 22 contains direct correspondence of Onsager
with von Kármán in 1945. Relevant for our purposes are
two remarkable documents that Onsager wrote, the first
a two-page note to Pauling �Onsager �1945a�; the “Paul-
ing note,” reproduced here as Appendix A� on March
15, 1945, and the second an 11-page account he sent to
Lin �Onsager �1945b�; the “Lin note,” reproduced as
Appendix B� in June 1945. Both notes were forwarded
to von Kármán by the primary recipients and later were
sent to him directly by Onsager on July 25, 1945. Both
are organized along the lines of Onsager’s later 1949 pa-
per �Onsager, 1949d� discussing first two-dimensional
point-vortex equilibria and then dissipative, three-
dimensional turbulence. The Pauling note reveals a
whimsical side to Onsager, who entitled the section on
point vortices “The little vortices who wanted to play”
and whose presentation, while technically sound, is in
the humorous style of a nursery story. The Lin note, by
contrast, is serious in tone.

The handwritten notes are preserved in the “Lars
Onsager Archive” maintained at the Norges Teknisk-
Naturvitenskapelige Universitet �NTNU� in Trondheim,
Norway. Upon Onsager’s death of heart failure in 1976,
his widow, Margarethe, deposited most of his unpub-

lished papers and research notes at the Sterling Memo-
rial Library of Yale University. Several researchers �S.
Machlup, P. A. Lyons, W. W. Watson, R. M. Fuoss, A.
Patterson, Jr., and D. Leaist� helped to classify the ma-
terial. The original collection was retrieved by the family
in 1981 but a microfilm copy is available at Yale. The
original documents were stored at the Onsager farm at
Tilton, New Hampshire, until they were deposited in
1997 in Trondheim.

Among the extensive materials stored at Trondheim
are three folders, numbered as 11:129, 11:132, and
11:135. These folders contain Onsager’s private research
notes on hydrodynamic turbulence. The material in the
first folder 11:129 can be reliably dated to the period
1940–1945. First, as internal evidence, the opening page
of the folder contains a list of references to various
papers on turbulence, including those of Taylor �1935,
1937, 1938�, Taylor and Green �1937�, von Kármán
�1937�, von Kármán and Howarth �1938�, MacPhail
�1940�, Trubridge �1934�, Tollmien �1933a, 1933b�, and
Burgers �1929a, 1929b, 1929c, 1933a, 1933b, 1933c,
1933d�, and an unpublished 1931 reference of C. W.
Oseen. The latest paper in the list is that of MacPhail
in 1940, which sets a lower bound for the date of the
folder. Second, almost the entire contents of the folder

FIG. 2. Onsager’s famous contemporaries who influenced his
theories of turbulence. Figures courtesy of �a� Cambridge Uni-
versity Press; �b� the Archives, California Institute of Technol-
ogy; �c� the JM Burgerscentrum; and �d� the MIT Museum and
the Library of Congress.
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are either mentioned explicitly in the Lin note of June
1945, or at least alluded to therein. Thus 1940–1945
seems to be the likely period for Folder 11:129, and it is
probably safe to say that all the material was worked out
by Onsager before he published his full-length paper in
1949. On the other hand, several pages in Folder 11:132
are written on stationary from the 10th Coral Gables
Conference on Fundamental Interactions, held during
January 22–26, 1973, in Coral Gables, Florida. Thus
Folder 11:132 is assuredly from after 1973. This is pre-
sumably one reason why it was labeled by S. Machlup,
one of the compilers of the archives, with the notation
“1975?” indicating his estimate of the date. The contents
of Folder 11:135 build upon the results of 11:132 and
likely follow it chronologically. Thus Folders 11:132 and
11:135 can be dated with some certainty to 1973–1975, a
couple of years before Onsager’s death. It is interesting
that Onsager returned to fluid turbulence at a time
when, as is widely known �Longuet-Higgins and Fisher,
1995�, most of his attention was on biology.

The entire contents of the three folders are listed
briefly in our Appendix C. In the following discussion,
we shall reproduce several pages of these handwritten
notes, those that bear on our discussion most directly.
Copies of the folder contents may be obtained by re-
quest from the Lars Onsager archive in Trondheim. On-
sager’s notes on the wide range of topics that exercised
his attention during his lifetime, in mathematics, physics,
chemistry, and biology, are archived there and summa-
rized on-line.1 There are doubtless many surprises for
scientists and for historians of science hidden in those
folders and still waiting to be discovered.

III. STATISTICAL EQUILIBRIUM OF TWO-DIMENSIONAL
FLUIDS

A. Onsager’s theory of point-vortex equilibria

The Pauling and Lin notes discuss, in their first half,
the same subject as the first half of the published paper
�Onsager, 1949d� entitled “Ergodic Motion of Parallel
Vortices.” In all these writings Onsager discussed a
simple Hamiltonian particle model of 2D ideal fluid
flow, the point-vortex model of Helmholtz �1867� and
Kirchhoff �1883�, describing this motion for a system of
N vortices in a plane, or of straight and parallel line
vortices in three dimensions. If the planar coordinates of
the ith vortex are ri= �xi ,yi� and if that vortex carries a
net circulation �i, then the equations of motion are

�i
dxi

dt
=

�H

�yi
, �i

dyi

dt
= −

�H

�xi
, �1�

where H is the fluid kinetic energy. When there are no
boundaries, H has the form

H = −
1

2��
i�j

�i�j ln�rij/L� , �2�

where rij is the distance between the ith and jth vortex
and L is an �arbitrary� length scale. For confined flow
the logarithm is replaced by a more general Green’s
function of the Laplacian G�ri ,rj� with appropriate
boundary conditions, and single-vortex terms are added
to represent the interactions of each vortex with its own
image charges and possibly with an external stream
function. Onsager cited as his source for these equations
the works of Lin �1941, 1943�, who extensively studied
their mathematical properties. In a letter of September
4, 1945, Lin wrote to von Kármán �Lin, 1945a�:

“I was asking him �Onsager� for some reprints of
his paper on the statistical mechanics of crystal lat-
tices on behalf of a friend of mine. He sent me the
reprints, and asked, perhaps out of courtesy, for
reprints of my papers. I sent him some, including
my earlier work at Toronto on the motion of vor-
tices. He was apparently struck by the Hamiltonian
form of the differential equations satisfied by the
coordinates of the vortices, and tried to develop a
statistical mechanics for them.”

A good modern source for the point-vortex model is
Marchioro and Pulvirenti �1994� in which it is proved
that the model describes the motion of concentrated
blobs of vorticity, evolving according to the 2D incom-
pressible Euler equations, as long as the distance be-
tween the blobs is much greater than their diameters
�Theorem 4.4.2�.2 Another result in the opposite direc-
tion �Theorem 5.3.1� states that a smooth solution of
the 2D Euler equations ��r , t� can be approximated as
N→�, over any finite time interval, by a sum �N�r , t�
=�i=1

N �i�„r−ri�t�…, where �i= ±1/N and ri�t�, i=1, . . . ,N
are the solutions of Eqs. �1�.

With this model, Onsager proposed a theoretical ex-
planation for a commonly observed feature of nearly
two-dimensional flows: the spontaneous appearance of
large-scale, long-lived vortices. Examples are the large,
lingering storms in the atmospheres of the gas giants of
the outer solar system, such as the Great Red Spot of
Jupiter; see Fig. 3. Large vortices are also readily seen
downstream of flow obstacles �von Kármán, 1911, 1912�,

1http://www.ub.ntnu.no/formidl/hist/tekhist/tek5/

2In a footnote, Onsager �1949d� remarked that the model
should work better for superfluids because “vortices in a su-
prafluid are presumably quantized; the quantum of circulation
is h /m, where m is the mass of a single molecule.” In fact,
these equations of motion have been formally derived from
quantum many-body equations for parallel line vortices in su-
perfluids �Fetter, 1966� and rigorously derived within the 2D
Gross-Pitaevskii model in a limit where radiation into sound
waves is negligible �Lin and Xin, 1999�. In particular, if all drag
and radiative effects are negligible, then vanishing of the net
Magnus force requires that vortices move “quasistatically”
with the local superfluid velocity. See Thouless et al. �1999� and
Barenghi et al. �2001� for recent reviews of the still-active field
of quantized vortex dynamics.
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often evolving out of the turbulent wake. The common
appearance of such vortices was noted by other scien-
tists, for example, H. Poincaré, who gave a theory based
on stability considerations �Poincaré, 1893�.

Onsager suggested a probabilistic treatment. In his
own words �Onsager, 1949d�:

“The formation of large, isolated vortices is an ex-
tremely common, yet spectacular phenomenon in
unsteady flow. Its ubiquity suggests an explanation
on statistical grounds.”

Onsager proposed an explanation of the phenomenon
by an application of Gibbsian equilibrium statistical me-
chanics to the point-vortex model. His theory assumed
that the generation of the large-scale vortices was a con-
sequence of the inviscid Euler equations, which form a
Hamiltonian system conserving total kinetic energy. This
is rigorously true in two dimensions �as noted by On-
sager, 1949d� due to the conservation of enstrophy. In
particular, no sustained forcing is required to maintain
the vortex in this theory as long as the dissipation by
viscosity is weak. Onsager also assumed the validity of
the point-vortex approximation, though with reserva-
tions. In the Lin note he wrote:

“When we come to volume distributions of vortic-
ity �still parallel�, the approximate description by
line vortices introduces fictitious possibilities be-
cause it makes us forget the restrictions imposed
by the incompressibility of the fluid. More or less
equivalent artificial restrictions might serve as a
crude substitute.”

Likewise, he wrote thus in Onsager �1949d�:

“When we compare our idealized model with real-
ity, we have to admit one profound difference: the
distributions of vorticity which occur in the actual
flow of normal liquids are continuous…. As a sta-
tistical model in two-dimensions it is ambiguous:
what set of discrete vortices will best approximate
a continuous distribution of vorticity?”

Finally, Onsager assumed that the point-vortex dynamics
is ergodic in phase space over the surface of constant
energy, so that a microcanonical distribution is achieved
at long times. “We inquire about the ergodic motion of
the system,” Onsager wrote to Lin.

It is worth noting that Onsager may have gotten the
idea for this statistical treatment from a series of papers
by Burgers �1929a, 1929b, 1929c, 1933a, 1933b, 1933c,
1933d�, which are cited on the first page of Folder
11:129. In these articles Burgers attempts to apply
statistical-mechanical maximum entropy ideas to turbu-
lent flows. There is the following footnote in the first
paper �Burgers, 1929a�:

“In the case of the motion of an ideal fluid of par-
allel rectilinear vortices, the diameters of which are
small compared to their distances, canonical vari-
ables can be introduced according to a method de-
veloped by KIRCHHOFF and by LAGALLY
�comp. M. LAGALLY, Sitz. Ber. Münch. Akad. p.
377, 1914�. For these coordinates LIOUVILLE’s
theorem can be proved. In applying statistical
methods now the kinetic energy of the motion has
to be given.”

Thus the essential ingredients of Onsager’s theory were
already stated by Burgers, without, however, any sugges-
tion of their relevance to the problem of large-vortex
formation. It is interesting to observe that Onsager
wrote in the Lin note:

“That Liouville’s theorem holds in configuration-
space has no doubt been observed before, but it
appears that certain possible effects of the conser-
vation laws have been overlooked.”

The really ingenious step in Onsager’s theory was his
realization that point vortices would yield states of nega-
tive absolute temperature, at sufficiently high energy,
and that this result could explain the spontaneous ap-
pearance of large-scale vortices in two-dimensional
flows.

The crucial feature of the point-vortex system which
permits this conclusion is the fact that the total phase-
space volume is finite. Since the x and y components of
the vortices are canonically conjugate variables, the total
phase-space volume is ����=AN, where A is the area of
the flow domain and

��E� =� �
i=1

N

d2ri	„E − H�r1, . . . ,rN�… . �3�

Here the Heaviside step function 	�x�=1 for x
0 and
=0 for x�0. Thus one can see that ��E� is a non-

FIG. 3. �Color� The Great Red Spot, an anticyclonic vortex in
the upper atmosphere of Jupiter. It has existed at least since it
was observed in 1610 by Galileo Galilei with one of the first
telescopes and measures 14 000 km north-south and 40 000 km
east-west. Similar large-scale, long-lived vortices exist in the
atmospheres of the other gas giant planets of our solar system.
Features of “small-scale” turbulence can be clearly seen in the
picture. Courtesy of NASA, Voyager 1, from the NSSDC
Image Catalog.
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negative increasing function of energy E, with constant
limits ��−��=0 and ����=AN. Therefore its derivative

��E� = ���E� =� �
i=1

N

d2ri��E − H�r1, . . . ,rN�� �4�

is a non-negative function going to zero at both ex-
tremes, ��±��=0. Thus the function must achieve a
maximum value at some finite Em, where ���Em�=0. For
E
Em, ���E� will be negative. On the other hand, by
Boltzmann’s principle, the thermodynamic entropy is

S�E� = kB ln ��E� �5�

and the inverse temperature 1/�=dS /dE is thus nega-
tive for E
Em. This argument for the existence of nega-
tive absolute temperatures is the same as that published
by Onsager �1949d� some two years prior to their intro-
duction by Purcell and Pound �1951� for nuclear-spin
systems. Onsager further pointed out that negative tem-
peratures will lead to the formation of large-scale vorti-
ces by clustering of smaller ones. In his own words
�Onsager, 1949d�

“In the former case �when 1/�
0�, vortices of op-
posite sign will tend to approach each other. How-
ever, if 1 /��0, then vortices of the same sign will
tend to cluster—preferably the strongest ones—so
as to use up excess energy at the least possible cost
in terms of degrees of freedom. It stands to reason
that the large compound vortices formed in this
manner will remain as the only conspicuous fea-
tures of the motion; because the weaker vortices,
free to roam practically at random, will yield rather
erratic and disorganized contributions to the flow.”

The statistical tendency of vortices of the same sign
to cluster in the negative-temperature regime is clear
from a description by a canonical distribution e−�H,
with �=1/kB�. Negative � corresponds to reversing the
sign of the interaction, making like “charges” statisti-
cally attract and opposite “charges” repel.

B. Subsequent research on the point-vortex model

Onsager carried these considerations no further in his
1949 paper nor in any subsequent published work.3 Af-
ter his talk at the Florence meeting, there was no com-
ment on the new theory of large-vortex formation from
any conference participant. However, Onsager’s work
was not totally ignored. In a masterful review of theories

of turbulence written in the same year, von Neumann
�1949� took note of the point-vortex model and Onsag-
er’s statistical-mechanical theory. It led von Neumann to
speculate about the limits of Kolmogorov’s reasoning in
three dimensions and to recognize the profound conse-
quences of enstrophy conservation in two dimensions.
These considerations were carried further by Lee �1951�,
who also extended the Gibbsian statistical-mechanical
approach to Fourier-truncated Euler dynamics �Lee,
1952�.

However, after this initial flurry of work, there was a
comparatively long period in which Onsager’s statistical
theory was not further explored. In due course, however,
it played a role in stimulating the development by
Kraichnan �1967� of the concept of the inverse energy
cascade, which describes the irreversible, dynamical pro-
cess by which energy injected through an external force
accumulates at large scales in two dimensions. The situ-
ation changed further in the early 1970s when a connec-
tion was made to the two-dimensional electrostatic
guiding-center plasma. This system is one in which long
filaments of charge are aligned parallel to a uniform
magnetic field B and move under their mutual electric
field E with the “guiding-center” velocity E�B /B2. The
mathematical description of this system is identical to
that of a set of point vortices in two-dimensional, incom-
pressible Euler equations, as described above, in which
the charge of a filament corresponds to the circulation of
a vortex. In a pair of seminal papers on this subject,
Joyce and Montgomery �1973� and Montgomery and
Joyce �1974� returned to Onsager’s theory and worked
out a predictive equation for the large-scale vortex solu-
tions conjectured by Onsager.

A brief review of the Joyce-Montgomery consider-
ations, in the language of the 2D point-vortex system, is
worthwhile here. These authors considered a neutral
system, which we describe as consisting of N vortices of
circulation +1/N and N vortices of circulation −1/N. For
this system, there are two vortex densities,

�±�r� =
1

N�
i=1

N

��r − ri
±� , �6�

where ri
± , i=1, . . . ,N, are the positions of the N vortices

of circulation ±1/N, respectively. Note that the vorticity
field is represented by

��r� = �+�r� − �−�r� . �7�

Then, by state-counting arguments similar to those used
by Boltzmann in deriving his entropy function for ki-
netic theory, Joyce and Montgomery �1973� derived the
following formula for the entropy �per particle� of a
given field of vortex densities:

S = −� d2r�+�r�ln �+�r� −� d2r�−�r�ln �−�r� . �8�

They next reasoned that the equilibrium distributions
should be those which maximized the entropy subject to
the constraints of fixed energy,

3In fact, by modern standards, referees might not have per-
mitted the publication of these remarks, objecting that the au-
thor had not worked out sufficient details or derived concrete,
testable consequences of the theory. This would not necessarily
have been bad had such objections stimulated Onsager to ex-
pound the theory further. As we see below, he could indeed
have said more on the subject. However, such an objection
might also have had the undesirable consequence of causing
Onsager to remove the discussion from his paper completely,
with the loss to posterity of a creative idea.
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E =
1
2 � d2r� d2r�G�r,r����r���r�� , �9�

with the unit normalization given by

� d2r�±�r� = 1. �10�

From here, it is straightforward to work out the varia-
tional equation

�±�r� = exp���� d2r�G�r,r����r�� − ��±	 , �11�

where � and �± are Lagrange multipliers to enforce the
constraints, having the interpretation of inverse tem-
perature and chemical potentials, respectively. A closed
equation is obtained by introducing the stream function

��r� =� d2r�G�r,r����r�� �12�

and writing, via the inverse relation −��=�, that

− ���r� = exp
− ����r� − �+�� − exp
����r� + �+�� .

�13�

This is the final equation derived by Joyce and Mont-
gomery. Its maximum-entropy solutions give exact,
stable, stationary solutions of the 2D Euler equations
and should describe the macroscopic vortices proposed
by Onsager when ��0. Montgomery and Joyce �1974�
gave another independent derivation of the same equa-
tion by considering the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy for the n-point correlation
functions �n�r1 ,�1 , . . . ,rn ,�n�, with �i= ±1 and using the
mean-field approximation that �n�r1 ,�1 , . . . ,rn ,�n�
=�i=1

n �1�ri ,�i�.

C. Onsager’s unpublished work on vortex statistics

As Joyce and Montgomery themselves observed, their
final mean-field equation for �
0 is similar to the
Poisson-Boltzmann equation in the Debye-Hückel
theory of plasmas and electrolytes. Considering that On-
sager was a world expert in the Debye-Hückel theory of
electrolytes and had written extensively on the Poisson-
Boltzmann equation in that context, e.g., Onsager �1933,
1964�, it might be considered surprising if he had failed
to recognize this connection. In fact, the Lin note dis-
cusses this explicitly. We quote Onsager in full:

“Let us consider n� parallel vortices of circula-
tions K� 1 ,… ,K� n confined by a non-circular4 bound-
ary to a region of area S� . There exists a path-

function W�X1 ,Y1 , . . . ,Xn ,Yn� and no other
important integral of the motion. We inquire about
the ergodic motion of the system.

The effect of the restriction W�X1 . .Yn�=const.
depends on whether the prescribed value is less
than the average

W̄ = S−n� WdX1 . . . dYn

over configuration-space, or greater. In the critical
case W=W̄ we get on the average a random distri-
bution of the vortices.

For the case W� �W̄� we may approximate the
micro-canonical distribution by a canonical distri-
bution with a positive temperature. For small val-
ues of W̄−W we can develop a theory analogous to
the Debye-Hückel theory of electrolytes. When
W̄−W is not small, we get a pronounced tendency
toward mutual association of vortices of opposite
sign, and strong vortices will be squeezed against
the boundary. These phenomena could be dis-
cussed by methods analogous to Bjerrum’s treat-
ment of weak electrolytes.5 The process of neutral-
ization and trapping by the boundary will release
energy until the vortices which are still ‘free’
can move almost at random.

The case W
W̄ is quite different. We now need
a negative temperature to get the required energy.
The appropriate statistical methods have ana-
logues not in the theory of electrolytes, but in the
statistics of stars. In a general way we can foresee
what will happen. Vortices of the same sign will
tend to move together, more so the stronger the
repulsion6 between them. After this aggregation of
the stronger vortices has disposed of the excess en-
ergy, the weaker vortices are free to roam at will.”

These remarkable passages require a thorough discus-
sion.

First, we find here a rather different argument than
from Onsager �1949d� for the existence of a critical en-
ergy Em at which negative temperatures appear. Further-
more, Onsager in this passage provides a concrete for-
mula for the critical energy as a volume average of the
Hamiltonian. This result was not mentioned four years
later by Onsager �1949d� and, in fact, was never
published by him. The simple idea underlying it is
that the maximum of the Gibbs entropy S�f�=

4For circular domains, there is a second conserved quantity,
fluid angular momentum. For example, see Lundgren and
Pointin �1977�. This quantity must be considered for equilib-
rium statistical mechanics of fluids in circular enclosures, and it
plays a crucial role in justifying the existence of negative tem-
peratures for free flows in infinite two-dimensional domains.

5Many years later, J. McCauley, Jr., Onsager’s last Ph.D. stu-
dent at Yale, used such methods to study the kinetics of the
Kosterlitz-Thouless vortex-unbinding transition in low-
temperature helium films. See McCauley �1977� and the enter-
taining account in McCauley �1995�.

6In the manuscript from the von Kármán archive, there is a
handwritten question mark at this point, written presumably
by either von Kármán or Lin. The writer may have been per-
plexed as to why repulsion should lead to clustering.
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−kB�dX1¯dYnf ln f is obtained for the constant
n-particle distribution function f�X1 , . . . ,Yn�=1/Sn, with
S the area of the flow domain. Therefore, assuming an

equivalence of ensembles, the value W=W̄ at which the
microcanonical entropy ln ��W� is maximized is just the
average of W with respect to the uniform distribution
over the flow domain. In this maximum-entropy state,
the n vortices are all uniformly and independently dis-
tributed over the area. Much later, the problem of ob-
taining the critical energy of the point-vortex system was
considered in the published literature. It was argued by
Taylor �1972� and by Joyce and Montgomery �1973� that
the critical energy Em=0 for the neutral vortex system
with N vortices of circulation +� and N of −�. It was not
until 1993 that the above more general formula of On-
sager was rediscovered and rigorously justified by Eyink
and Spohn �1993�.

The second factor to emerge is that Onsager did real-
ize the connection with Debye-Hückel theory, as would
be expected. There is more: When Onsager wrote that
“we can develop a theory analogous to the Debye-
Hückel theory,” he was not just speaking rhetorically.
There is, in fact, a remarkable set of six pages in Folder
11:129 of Onsager’s unpublished notes, pp. 8–13, which
develops exactly such a theory. These are the only pages
in the folder which deal with the point-vortex model.
Two of them �pp. 8 and 11; see Figs. 4 and 5� are repro-
duced here. The notations follow those of Lin �1941,
1943�. On the first page �p. 8�, Onsager sketches a deri-
vation of the following mean-field Poisson-Boltzmann
equation,

�2�̄i +
1

A�
j
�je

��j��̄i−�� = 0,

using a maximum-entropy argument. It is interesting
that he refers to the Lagrange multiplier for the energy
constraint as the “hydrodynamic temperature” �in fact,
its negative�. Note that −�f ln f in Onsager’s argument
corresponds to the Gibbs’ ensemble entropy, not the
macroscopic Boltzmann entropy �8� used later by Joyce
and Montgomery. Onsager’s mean-field equation is actu-
ally more general than theirs because he allows for arbi-
trary circulations �i of the vortices. On the next page �p.
11 of the folder�, Onsager works out the 2D analog of
standard calculations in Debye-Hückel theory for small
� or for energies close to Em, e.g., see Landau and
Lifschitz �1980�, Chaps. 78 and 79, pp. 239–245. Onsager
considers only positive temperatures ���0� and intro-
duces the analog of the �inverse� Debye screening length
−�2= �� /A��i�i

2. His final result on this page is the ther-
modynamic relation between temperature and mean en-
ergy, �+ln� 1

2��=4�W /�i�i
2. Considering the definition of

� in terms of inverse temperature 1/T=−kB�, this for-
mula can be rewritten as

1

T
= �const�

A

�
i
�i

2
exp� 8�W

�
i
�i

2	 . �14�

Taking into account that W is the negative of the energy
and differences in normalization, this expression is
closely similar to that obtained later by Edwards and
Taylor �1974� from a microscopic calculation; see their
Eq �29�. Of course, Onsager’s relation �14� was worked
out for the subcritical regime and admits no negative
temperature solutions.

Thus these pages of Onsager’s private notes substan-
tially carry out the program suggested to Lin for study-

ing the regime of “small �positive� values of W̄−W.”7

The remaining pages fill in some additional details. On
p. 10, Onsager derives the formula for the critical energy

as we did above, writing that “��W�=max for W=W̄.”
On p. 13 he attempts to evaluate space integrals of the
Green’s function, apparently in order to develop more
concrete expressions for the critical energy.

It is unclear from available evidence if Onsager also
realized the validity of the mean-field Poisson-
Boltzmann equation for the negative-temperature re-
gime above the critical energy. However, there is his tan-
talizing reference in the Lin note to “the statistics of
stars.” The equilibrium statistical mechanics of gravitat-
ing systems, with its many peculiarities and anomalies,
was indeed already extensively investigated in the 19th
century by scientists such as J. K. F. Zöllner �1834–1882�,
Lord Kelvin �1824–1907�, G. A. D. Ritter �1826–1908�, J.
H. Lane �1819–1880�, and R. J. Emden �1862–1940�. A
good review of that work was available in Onsager’s
time through the German monograph of Emden �1907�,
while a more modern source would have been Chan-
drasekhar �1939�. Among other results discussed in Em-
den’s book is the “Lane-Emden equation,” which gov-
erns the temperature or density profiles of polytropic
gas spheres in convective thermal equilibrium under
gravitational attraction. The equation for the isothermal
spheres is the exact analog of the Joyce-Montgomery
mean-field equation for point vortices if one assumes, as
is appropriate for gravitation, that there is only one sign
of the charge �e.g., see Messer and Spohn, 1982�. It may
be that Onsager was aware of the validity of the mean-
field equation for equilibrium vorticity distributions at
negative temperature. If so, then it is somewhat surpris-
ing that he never expanded the material in Folder 11:129
on statistical mechanics of point vortices into a full pub-
lication. On the other hand, as we shall see below, On-
sager’s private notes contain other remarkable results
that he did not publish or expand.

D. Recent advances and applications

One issue that Onsager never addressed was the ap-
propriate thermodynamic limit for the validity of his sta-
tistical theory of large-scale 2D vortices. The Debye-
Hückel theory is valid in the standard thermodynamic

7Incidentally, p. 11 contains Onsager’s sketches of what ap-
pear to be coherent vortices, including a cat’s-eye vortex and a
hexatic vortex.
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FIG. 4. Page 8 of Folder 11:129 �Onsager, circa 1945�. The first two lines, l.1 and l.2, give the Routh-Kirchhoff function W, which
is −H, the negative of the Hamiltonian. l.3 is the net stream function ��x ,y ;x1 ,y1 ; . . . ;xn ,yn� of the system of n point vortices.
l.4 is the average of the stream function over the distribution function f�x1 ,y1 ; . . . ;xn ,yn� of the vortices conditioned on the
location of a distinguished vortex, the ith. l.5 is the Poisson equation for �̄i, whose source is the conditionally averaged
vorticity. l.6 is the condition of maximum entropy at fixed energy. l.7 is the Gibbs canonical distribution, but where � /�
is the negative of the usual temperature. l.8 is the mean vorticity from the average over the Gibbs distribution. l.9 is the
mean-field Poisson-Boltzmann equation and l.10 is its linearization for small �. Reproduced courtesy of the Onsager Archive,
NTNU.
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FIG. 5. Page 11 of Folder 11:129 �Onsager, circa 1945�. l.1 is the condition of positive temperature ���0� and of zero net

circulation or neutrality �i�i=0. l.2 is the definition of the inverse screening length �. l.3 is the Helmholtz equation for �̄i. l.4 is the

solution by a modified Bessel function of the second kind. l.5–9 is the asymptotic expansion of the Bessel function for small

argument. l.10 defines �̄i
+, the remainder of the conditional mean stream function at the origin after subtracting the contribution

of the ith vortex. l.11 is the mean energy W̄i=�i�̄i
+ in the atmosphere of the ith vortex. l.12 is the total mean energy from the

formula W= 1
2�iW̄i of electrostatics and l.13 is the mean energy-temperature relation. Reproduced courtesy of the Onsager

Archive, NTNU.
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limit in two dimensions, for which area A→� with the
number of vortices N→� and energy E→� in such a
way that n=N /A, e=E /A tend to a finite limit. Further,
the circulations �i are held fixed, independent of N, e.g.,
�i= ±1. These points are particularly clear from the deri-
vation of Eq. �14� by Edwards and Taylor �1974�. Note
that the inverse temperature 1/T in Eq. �14� scales as
A /N, since �i�i

2�O�N�, and approaches a finite limit in
the thermodynamic limit. As E /N varies over all real
values the temperature T stays positive. In fact, it has
been rigorously proved by Fröhlich and Ruelle �1982�
�see also Campbell and O’Neil, 1991; O’Neil and Red-
ner, 1991� that the standard thermodynamic limit exists
for the point-vortex model, but yields only positive tem-
peratures. To obtain the negative temperature states
proposed by Onsager, one must consider energies that
are considerably higher, greater than the critical energy.
It is an immediate consequence of Onsager’s integral
formula for the critical energy that if �i�O�1� for all i,
then Em�O�N2�, because of the sum over all vortex
pairs. In other words, a nontrivial limit with energy E
�O�1� can only be obtained if one takes �i�O�1/N�, as
in our discussion of the Joyce-Montgomery theory
above. It has been rigorously proved that for the scaling
�i�O�1/N� in a fixed flow domain of finite volume the
Joyce-Montgomery mean-field theory is valid. This was
originally proved for the canonical ensemble by Caglioti
et al. �1992� and Kiessling �1993� �see also Messer and
Spohn, 1982� and later for the microcanonical ensemble
by Eyink and Spohn �1993�, Caglioti et al. �1995�, and
Kiessling and Lebowitz �1997�. It is important to note
that the equivalence of ensembles assumed by Onsager
can break down if the specific heats become negative
�Eyink and Spohn, 1993; Caglioti et al., 1995; Kiessling
and Lebowitz, 1997�, as has in fact been observed in
numerical studies and some experiments �Smith and
O’Neil, 1990�. In that case, it is the microcanonical en-
semble which is physically correct and justified by the
ergodicity assumption. The above results have put the
Onsager theory and the Joyce-Montgomery mean-field
equation on firm mathematical footing.

Nevertheless, as Onsager himself described the theory
in the Lin note, “the simplifying hypothesis is rather
bold.” Onsager was very modest about what had been
achieved and was clear about the tentative character of
his two major assumptions: the point-vortex approxima-
tion and the ergodicity hypothesis. We close this section
with a short report on the current status of Onsager’s
theory vis à vis the status of its founding assumptions
and a comparison with later simulations and experi-
ments.

Taking the point-vortex approximation first, we have
already mentioned that there are rigorous results which
show that any smooth 2D Euler solution ��r , t� may be
approximated arbitrarily well over a finite time interval
0� t�T by a sum of point vortices �i=1

N �i�„r−ri�t�… with
�i�ci /N, where ci are constants as N→� �Marchioro
and Pulvirenti, 1994, Theorem 5.3.1�. However, this is
not sufficient to justify equilibrium statistical mechanics

at long times because the limits T→� and N→� need
not commute. We mentioned earlier some of Onsager’s
own reservations about the point-vortex approximation,
but he made an even more explicit criticism in Onsager
�1949d�:

“…in two-dimensional convection the vorticity of
every volume element of the liquid is conserved, so
that convective processes can build vortices only in
the sense of bringing together volume elements of
great initial vorticity…. This digression will make
clear that the present theory for the formation of
large vortices does not apply to all cases of un-
steady flow. As a matter of fact, the phenomenon is
common but not universal. It is typically associated
with separating boundary layers, whereby the ini-
tial conditions are not so very different from those
contemplated in the theory: the vorticity is mostly
concentrated in small regions, and the initial en-
ergy is relatively high.”

These are the same issues that Onsager raised with Lin
when he spoke about “the restrictions imposed by the
incompressibility of the fluid.” Onsager’s concerns can
be clearly understood by considering the initial condi-
tion of an ideal vortex patch, with a constant level of
vorticity on a finite area. Because that area is conserved
by incompressibility under the 2D Euler dynamics, it is
not possible for the vorticity to concentrate or to inten-
sify locally for this initial condition. However, this is not
true if one were to approximate the patch by a distribu-
tion of point vortices at high energies. In that case, the
mean-square distance between point vortices could de-
crease over time and the effective area covered could
similarly decrease, leading to a more intense, localized
vortex structure. Thus one expects discrepancies here
between the continuum 2D Euler and the point-vortex
model for long times.

A great step toward eliminating these defects was
taken independently by Miller �1990� and Robert �1990�.
They both elaborated an equilibrium statistical-
mechanical theory directly for the continuum 2D Euler
equations, without making the point-vortex approxima-
tion. See Robert �1991�, Robert and Sommeria �1991�,
and Miller et al. �1992� for further development and dis-
cussion. The basic object of both of these theories was a
local distribution function n�r ,��, the probability density
that the microscopic vorticity ��r� lies between � and
�+d� at the space point r. The picture here is that the
vorticity field in its evolution mixes to very fine scales so
that a small neighborhood of the point r will contain
many values of the vorticity with levels distributed ac-
cording to n�r ,��. Thus n satisfies

� d�n�r,�� = 1 �15�
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at each point r in the flow domain. Note that the micro-
scopic vorticity ��r� differs from the macroscopic vortic-
ity obtained by averaging:

�̄�r� =� d��n�r,�� . �16�

The latter is the vorticity that will be observed on a
coarse-grained scale. Furthermore, the function n�r ,��
records an infinite set of conserved quantities of the 2D
incompressible Euler equations, namely, the area occu-
pied by each level set of the initial vorticity. If g���d� is
the fraction of the total area A on which occur vorticities
between � and �+d�, then

1

A
� d2rn�r,�� = g��� . �17�

By a Boltzmann counting argument, one can show that
the entropy associated with a given distribution function
n�r ,�� is

S = −� d2r� d�n�r,��ln n�r,�� . �18�

Maximizing this entropy subject to the constraints �15�
and �17�, as well as fixed energy

E =
1
2 � d2r� d2r�� d�� d�����G�r,r��

�n�r,��n�r,�� , �19�

gives

n�r,�� =
1

Z�r�
exp
− �̄���̄�r� − ������ , �20�

where Z�r�, ����, �̄ are Lagrange multipliers to enforce
constraints �15�, �17�, and �19�, respectively. The stream
function satisfies the generalized mean-field equation

− ��̄�r� =
1

Z�r� � d�� exp
− �̄���̄�r� − ������; �21�

see Miller �1990� and Robert �1990�. This theory is an
application to 2D Euler of the method worked out by
Lynden-Bell �1967� to describe gravitational equilibrium
after “violent relaxation” in stellar systems.

The Robert-Miller theory solves the problems dis-
cussed by Onsager, in the passage quoted above, with
respect to the point-vortex assumption. The new theory
incorporates infinitely many conservation laws of 2D
Euler, although in our opinion that is not the critical
difference. In fact, the point-vortex model, in the gener-
ality considered by Onsager, also has infinitely many
conserved quantities, i.e., the total number of vortices of
a given circulation.8 More importantly, the Robert-

Miller theory includes information about the area of the
vorticity level sets, which is lacking in the point-vortex
model. As remarked by Miller et al. �1992�, the Joyce-
Montgomery mean-field equation is formally recovered
in a “dilute-vorticity limit” in which the area of the level
sets shrinks to zero keeping the net circulation fixed.
This corresponds well with the conditions suggested by
Onsager for the validity of the point-vortex model that
“vorticity is mostly concentrated in small regions.”

The second main assumption invoked in Onsager’s
theory is the ergodicity of the point vortex dynamics.
This is a standard assumption invoked in justifying
Gibbsian statistical theory. It has, however, proved to be
false! Khanin �1982� showed that a part of the phase
space of the system of N point vortices in the infinite
plane consists of integrable tori. His proof used the fact
that the three-vortex system is exactly integrable �No-
vikov, 1975�. By adding additional vortices successively
at further and further distances and using the fact that
these additional vortices only weakly perturb the previ-
ous system, one can apply Kolmogorov-Arnold-Moser
theory iteratively to establish integrability of the
N-vortex system. Of course, statistical mechanics does
not require strict ergodicity because macroscopic ob-
servables are nearly constant over the energy surface.
Thus any reasonable mixing over the energy surface will
suffice to justify the use of a microcanonical ensemble.
Of more serious concern are the possible slow time

8Expanding upon this remark, we note that the Joyce-
Montgomery mean-field theory for point vortices can be gen-
eralized to allow for any finite number of circulation values,
and the resulting theory bears a striking resemblance to the

Robert-Miller theory. For each of the possible circulations �,
one can introduce a density

���r� =
1

N�
i=1

N

��i,�
��r − ri� , �22�

which satisfies

� d2r���r� = p�, �23�

where p� is the fraction of the N vortices with circulation
strength �. Thus also

�
�
� d2r���r� = 1. �24�

The Joyce-Montgomery theory can easily be generalized to
this case, with the result that the equilibrium densities become

���r� =
1

Z
exp
− �����r� − ���� , �25�

where

− ���r� =
1

Z�
�

� exp
− �����r� − ���� = ��r� . �26�

Except for normalization, this equation is identical in form to
the Robert-Miller equation for an initial condition consisting
of a finite number of vortex patches with vorticity levels �� and
areas A�. It can be formally derived from that equation in a
“dilute-vorticity limit” in which ��=� /� and A�=p��, while
�→0.
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scales of this mixing. Onsager also worried about this
point when he wrote to Lin that:

“I still have to find out whether the processes an-
ticipated by these considerations are rapid enough
to play a dominant role in the evolution of vortex
sheets, and just how the conservation of momen-
tum will modify the conclusions.”

Lundgren and Pointin �1977� performed numerical simu-
lations of the point-vortex model with initial conditions
corresponding to several local clusters of vortices at
some distance from each other. The equilibrium theory
predicts their final coalescence into a single large super-
vortex. Instead, it was found that the clusters individu-
ally reach a “local equilibrium,” not coalescing over the
time scale of the simulation. Lundgren and Pointin ar-
gued theoretically that the vortices will eventually reach
the equilibrium, single-vortex state. Similar metastable
states of several large vortices have been seen in experi-
ments with magnetically confined, pure electron col-
umns and dubbed “vortex crystals” by Fine et al. �1995�
and Jin and Dubin �2000�. These states have been ex-
plained by a regional maximum-entropy theory in which
entropy is maximized assuming a fixed number of the
strong vortices �Jin and Dubin, 1998, 2000�. Clearly, On-
sager’s ergodicity hypothesis is nontrivial and open to
question.

Despite these caveats, equilibrium theories of large-
scale vortices have had some notable successes. Onsager
himself considered decaying wake turbulence in an “in-
finite vortex trail,” as he wrote to Lin. Indeed pp. 28–31
of Folder 11:129 contain detailed calculations,9 similar to
those in Lamb �1932�, Chap. 156, pp. 224 and 225. Ana-
lytical solutions of the mean-field Poisson-Boltzmann
equation for vortex street geometries were later discov-
ered �Chow et al., 1998; Kuvshinov and Shep, 2000�. Fi-
nal states of freely decaying 2D Navier-Stokes simula-
tions at high Reynolds number, started from fully
turbulent initial conditions, have also been found to be
in remarkable agreement with the predictions of the
Joyce-Montgomery or sinh-Poisson mean-field equation
�Montgomery et al., 1992, 1993�. Similar simulations
started from a single band of vorticity, periodically
modulated to induce Kelvin-Helmholtz instability, show
good agreement with the generalized Robert-Miller
theory �Sommeria et al., 1991�. In the limit of a thin
initial band, the original Joyce-Montgomery mean-field
theory is found to give identical results and agrees well
with the simulations. Furthermore, the process is much
as Onsager anticipated when he wrote to Lin:

“… the sheet will roll up and possibly contract into
concentrated vortices in some places, and at the
same time the remaining sections of the sheet will
be stretched into feeble, more or less haphazard
distributed discontinuities of velocity.”

For further comparisons of mean-field equations with
results of numerical simulations, see Yin et al. �2003�. A
number of natural phenomena have been tentatively de-
scribed by equilibrium vortex models of the sort pro-
posed by Onsager. A fascinating example that was men-
tioned earlier is the Great Red Spot of Jupiter. For some
recent work on this topic, see Turkington et al. �2001�
and Bouchet and Sommeria �2002�.

IV. THREE-DIMENSIONAL TURBULENCE

A. Onsager’s cascade theory

The second half of Onsager �1949d�, titled “Turbu-
lence,” deals with three-dimensional and fully developed
turbulence. The second halves of the Pauling and Lin
notes also discuss 3D turbulence. The Gibbsian statisti-
cal theory discussed in the first half of these documents
does not describe a turbulent cascade process. As On-
sager wrote at the end of the first section of Onsager
�1949d� on two dimensions,

“How soon will the vortices discover that there are
three dimensions rather than two? The latter ques-
tion is important because in three dimensions a
mechanism for complete dissipation of all kinetic
energy, even without the aid of viscosity, is
available.”

Of course, it is no surprise that equilibrium statistical
mechanics is inapplicable to a dissipative, irreversible
process such as turbulence. More startling is Onsager’s
conclusion that turbulent motion remains dissipative
even in the limit as molecular viscosity tends to zero. In
the Pauling note of March 1945, he had already made a
similar assertion:

“The energy is gradually divided up among � de-
grees of freedom, only for sufficiently large k� the
viscosity disposes of it for good; but it does not
seem to matter much just how large this k� is.”

This remark was repeated at greater length in the Lin
note of June 1945 as well:

“We anticipate a mechanism of dissipation in
which the role of the viscosity is altogether second-
ary, as suggested by G. I. Taylor: a smaller viscosity
is automatically compensated by a reduced micro-
scale of the motion, in such a way that most of the
vorticity will belong to the micro-motion, but only
a small fraction of the energy.”

Again, in the abstract of his APS talk in November, he
wrote:

9Onsager’s main object seems to have been to obtain analyti-
cal formulas for Lagrangian particle paths in the velocity field
of a Kármán vortex street. He did this by introducing a suit-
able velocity at infinity, −u0, to render the street stationary. He
then used the constancy of the modified stream function �
=�−u0y along particle paths and the known formula for the
stream function � of the Kármán street to deduce the equation
of the curves corresponding to the particle paths.
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“In actual liquids this subdivision of energy is in-
tercepted by the action of viscosity, which destroys
the energy more rapidly the greater the wave num-
ber. However, various experiments indicate that
the viscosity has a negligible effect on the primary
process; hence one may inquire about the laws of
turbulent dissipation in an ideal fluid.”

For good measure, similar remarks were made no less
than four times in the published paper �Onsager, 1949d�.
Considering the economy Onsager routinely prized in
stating his results, it would appear that explaining the
inviscid mechanism of energy dissipation in 3D turbu-
lence was a chief preoccupation of Onsager’s work on
statistical hydrodynamics.

We can ask what evidence may have pushed Onsager
in that direction. One reference in the 1949 paper was
Dryden’s review article �Dryden, 1943� on the statistical
theory of turbulence. At the time, Dryden �see Fig. 6�
was a researcher in aerodynamics at the National Bu-
reau of Standards in Washington, D.C. Starting in 1929,
he published a series of papers on the measurement of
turbulence in wind tunnels. A problem he had studied
was the decay of nearly homogeneous and isotropic tur-
bulence behind a wire-mesh screen. Dryden used hot-
wire anemometry techniques to take accurate measure-
ments of turbulence levels v in the tunnel, where v
denotes the velocity fluctuation away from the mean.
This permitted him to determine the rate of decay of the
turbulent kinetic energy10 Q as Q=− 1

2 �d /dt�v2, where

d /dt denotes the convective derivative. Let V= �v2�1/2 be
the root-mean-square velocity fluctuation and L the spa-
tial correlation length of the velocity, usually called the
integral length scale. By simple dimensional analysis,

Q = A
V3

L
, �27�

where A=A�Re� is a function only of the Reynolds
number Re=VL /�, with �=� /� the kinematic viscosity
of the fluid. Dryden found that A�Re� tends to a con-
stant at high Re. These and other data were collected by
Batchelor �1953� several years later. The quality of the
data in Batchelor’s figure, certainly the data available in
Onsager’s day, was not compelling. In fact, several years
later Saffman �1968� was led to remark: “The experi-
mental evidence is far from convincing and would not
rule out” weak dependencies on the Reynolds number.

However, modern experiments �Sreenivasan, 1984�
have convincingly demonstrated that the turbulent en-
ergy dissipation in homogeneous and isotropic turbu-
lence is independent of the molecular viscosity when the
viscosity is small, or the Reynolds number large. Nu-
merical solutions of the Navier-Stokes equations, these
days an important tool, have confirmed this behavior
�Sreenivasan, 1998�. The recent numerical study of
Kaneda et al. �2003� on a 40963 spatial grid has found
that A�Re� indeed asymptotes to a constant at high Rey-
nolds numbers. The situation in shear flows is more
complex and was summarized by Sreenivasan �1995�.
This complexity may perhaps be illustrated by citing the
results of Cadot et al. �1997� in the Taylor-Couette flow.
For smooth walls, distinctly different behaviors are ob-
served in the bulk of the flow and at the boundary. Most
of the dissipation is found to occur in a boundary layer
at the walls of the apparatus, but this dissipation is a
weakly decreasing function of the Reynolds number. On
the other hand, the dissipation in the bulk obeys Eq. �27�
with a coefficient that asymptotes to a constant at high
Reynolds number.

Despite the inconclusive experimental evidence of the
1930s and 1940s, G. I. Taylor was also struck by the
dramatic enhancement of dissipation in three-
dimensional turbulence and proposed a dynamical ex-
planation in terms of vortex stretching �Taylor, 1938�.
Onsager was well aware of Taylor’s ideas, as he stated to
Lin:

“In terms of the Lagrangian description, the dissi-
pation of energy in turbulent motion must be at-
tributed to stretching of the vortex fibers, which
generates vorticity more rapidly the more vigorous
the motion and thus accelerates the final dissipa-
tion by viscosity �Taylor�.”

Taylor’s idea was again summarized by Onsager �1949d�.
The essential ingredients of G. I. Taylor’s proposal are
three facts of inviscid, incompressible fluid flow: �i� vor-
tex lines are material lines, �ii� the volume of any mate-
rial body is conserved, and �iii� the Kelvin-Helmholtz
theorem, coupled with the reasonable assumption that

10Properly speaking, this quantity is the kinetic-energy dissi-
pation per unit mass of fluid. It is now denoted in the turbu-
lence literature, almost universally, by �. We shall violate this
convention in order to stay close to Onsager’s notation in his
papers and notes.

FIG. 6. �a� H. L. Dryden, the distinguished American aero-
dynamicist. His wind-tunnel experiments were a critical influ-
ence on Onsager’s theories of 3D turbulence. �b� A smoke
visualization of turbulent flow in a wind tunnel, where the grid
is at the top and the mean flow is downward. �a� courtesy of
the National Archives and Records Administration, and �b�
with permission of Thomas Corke and Hassan Nagib.
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lines materially advected by a turbulent fluid will tend to
lengthen �as well as become quite tangled and folded�.
Consider, then, a solid tube composed of a bundle of
vortex lines. Because the lines are materially advected in
a random way, they must, by the assumption, lengthen
dramatically. Because the volume of the tube is con-
served, its cross-sectional area dA must correspondingly
shrink. Since the flux of vorticity along the tube �dA is
conserved in time, by the Helmholtz theorem the vortic-
ity � must be greatly magnified. Note that the energy
dissipation itself may be related to the mean-square vor-
ticity, or enstrophy, by

d

dt
� 1

2
v2d3r = − �� �2d3r . �28�

Thus the vortex-stretching process by which � grows is a
powerful engine of turbulence manufacturing prodigious
amounts of energy dissipation �Taylor, 1938�.

These considerations may have played some role in a
mysterious discussion on pp. 2–6 at the beginning of
Folder 11:129 of Onsager’s unpublished notes. There he
introduces the expression

I = �
vortex

d�

�
, �29�

where the integral is along a vortex line. On p. 4 On-
sager gives a simple argument that this quantity is a ma-
terial invariant. Indeed, d� / �=d�dA / �dA, where the
numerator is a material invariant by incompressibility
and the denominator by the Helmholtz theorem. On-
sager then considers using this quantity for a phenom-
enology of turbulence. For example, on p. 2 he writes
down a dimensionally correct expression for an “eddy
viscosity” �*:

�* = I1/2V3/2. �30�

This is not a standard formula in the literature. Indeed,
eddy viscosity can be defined by the formula Q
=�*�V /L�2, which assumes that it accounts for the dissi-
pation based on velocity gradients �V /L at the large
length scale L. In that case, using the earlier formula
�27�, one gets �*�VL, which is the customary estimate.
One only gets agreement with Onsager’s formula �30� if
one assumes that I�L2 /V. In fact, on pp. 5 and 6 On-
sager uses such a formula to define a length scale L as a
“Prandtl mixing length” for inhomogenous turbulence:

L2 = IV . �31�

But this leaves open several questions. First, how exactly
is I defined? For example, is the integral along vortex
lines attached to the boundary or along closed lines, like
vortex rings? If it is along an infinite line, what is the
range of integration? Second, if one takes the formula as
defining a length scale L, then does it coincide �to within
a factor� with the standard integral length scale? And, if
the formula is correct, what is its special merit? Why is it
important that I should be a material invariant? Some
light may be shed by a remark in the Lin note:

“The distribution law �19� �the −5/3 spectrum� is
compatible with the hypothesis that the mean rate
of stretching of vortex lines is given by the average
rate of deformation in the liquid.”

Onsager seems to have been searching for a phenom-
enological formulation of Taylor’s view. Nevertheless,
these pages of his notes are not intuitively clear.

In any case, Onsager had developed his own view of
the process of turbulent energy dissipation. In the Paul-
ing note he wrote:

“Finally, the subdivision of the energy is a stepwise
process �mostly� such that the wave-number in-
creases typically by a factor between, say, 1 and 3,
in each step, and the terms in which k� , k� � and �k�
−k� �� are of the same order of magnitude have to
do most of it.”

Again in the note to Lin:

“The selection rule for the ‘modulation’ factor in
each term of �8� suggests a ‘cascade’ mechanism
for the process of dissipation, and also furnishes a
dynamical basis for an assumption which is usually
made on dimensional grounds only.”

On an interesting historical note, this passage seems to
contain the first use of the word “cascade” in the theory
of turbulence. The same uniquely suggestive term was
used again by Onsager in his 1945 abstract and in the
1949 article. For example, in Onsager �1949d� he wrote:

“In order to understand the law of dissipation de-
scribed by �11� �our Eq. �27��, which does not in-
volve viscosity at all, we have to visualize the re-
distribution of energy as an accelerated cascade
process.”

Thus Onsager claims that this cascade is scale local, or
between scales of the same order of magnitude, and ac-
celerated. Both of these claims require some explana-
tion.

Most of Onsager’s considerations on the cascade are
in wave-number space. Therefore we must say a bit
about the Fourier transform of the Navier-Stokes equa-
tion

d

dt
a�k� = − 2�i�

k�

�a�k − k�� · k��

��a�k�� −
1

k2 �a�k�� · k�k� − �2�k2a�k� .

�32�

Here a�k� are the Fourier coefficients of the velocity v�r�
in a periodic box. Energy transfer between wave num-
bers is described by

d

dt
a�k�2 = − 2�2�k2a�k�2 + �

k�

Q�k,k�� , �33�

where
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Q�k,k�� = �i
�a�k + k�� · k���a�− k� · a�− k���

+ �a�− k + k�� · k���a�k� · a�− k���� + c.c.

�34�

The symbol c.c. denotes complex conjugate. The precise
formula for Q is not that important at the moment, but
what is important is the easily established identity

Q�k,k�� + Q�k�,k� = 0. �35�

The quantity Q represents the instantaneous transfer of
energy out of wave number k and into wave number k�,
mediated by a third wave number k�= ±k±k�. The three
wave numbers k ,k� ,k� are usually called a triad. The
relation �35� expresses the fact that any energy leaving
wave number k by the triadic interaction must appear in
the wave number k�. Note that the third, convective
wave number k� plays a purely passive or catalytic role
in the process and does not give or receive energy itself.
The identity �35� is called detailed energy conservation
for the triad and was observed by Onsager in the Lin
note and published in the 1949 paper.

The concept of cascade can now be made more ex-
plicit, in Onsager’s �1949d� own words:

“…we note that according to �16a� �our Eq. �34��
the exchange of energy between wavenumbers ±k
and ±k� depends only on the amplitudes a which
belong to these wave-numbers and to their differ-
ences �±k±k��. If the latter, as well as k itself, are
of the order 1/L, then k� is at most of the order
2/L. Similar reasoning may be applied to subse-
quent steps in the redistribution process, and we
are led to expect a cascade such that the wave-
numbers increase typically in a geometric series, by
a factor of the order of 2 per step.”

This is the key statement of scale locality: the essential
interactions in the cascade are between wave numbers
of similar magnitude. Therefore very distant scales are
not involved in the transfer and the energy is passed in
each successive step to a wave number higher by a factor
of about 2. If this transfer process is also chaotic, the
information about the low wave numbers will tend to be
lost after many random steps, except for the constraints
imposed by total conservation laws. This motivates the
idea that the small scales of turbulence, or the high wave
numbers, will have their statistical properties completely
determined by the energy flux Q from the large scales.11

This was the basis for Onsager’s announcement in 1945
of the energy spectrum E�k���Q2/3k−5/3, with a univer-
sal dimensionless constant �. Of course, Kolmogorov
was led by similar considerations to the same conclusion
a few years earlier �Kolmogorov, 1941a, 1941b, 1941c�.12

These ideas can also be used to make an estimate of
the time required for each successive cascade step. A
dimensional reasoning similar to that above implies that
the turnover time required for processing of energy
through wave number k should be of the order

��k� � Q−1/3k−2/3. �36�

As one can see, the time becomes shorter as the wave
number increases: this is why the cascade is called accel-
erated. The estimate �36� was already given in Eq. �24� of
the Lin note, in Onsager’s private notes �on p. 22 of
Folder 11:129�, and in Onsager �1949d�. In all places,
Onsager shows that the total time to go from wave num-
ber k=1/L to wave number k=� is finite:

�
1/L

� dk

k
��k� �� . �37�

Essentially, the steps in the cascade accelerate so quickly
that—if not interrupted earlier by viscosity—it would re-
quire only a finite amount of time for energy to be
passed via nonlinear interactions from a low wave num-
ber to an infinitely high wave number! This calculation
of Onsager’s has sometimes been used to argue for the
idea that 3D incompressible Euler equations, started
from smooth initial conditions, will develop singularities
in finite time. As noted by Frisch �1995�, however, this
argument is not so clear because the validity of the for-
mula �36� for the turnover time for any arbitrarily high
wave number k presumes preexisting singularities.

B. Euler singularities and dissipative anomaly

Onsager did make a remarkable statement about 3D
Euler singularities at the very end of the 1949 paper
�Onsager, 1949d� relating them to the observed proper-
ties of turbulent energy dissipation:

“It is of some interest to note that in principle,
turbulent dissipation as described could take place
just as readily without the final assistance by vis-
cosity. In the absence of viscosity, the standard
proof of the conservation of energy does not apply,
because the velocity field does not remain differen-
tiable! In fact it is possible to show that the veloc-

11In fact, the small scales seem to remember the large length
scale L, in addition to the number of cascade steps, due to a
buildup of fluctuations in the course of the cascade. We discuss
this “small-scale intermittency” in Sec. IV.C. Since Q�V3 /L in
homogeneous and isotropic turbulence, which occupied most
of Onsager’s attention, remembering L is the same as remem-
bering V. In shear flows, the memory of V persists indepen-
dently of L and can corrupt scaling �Sreenivasan and Dhruva,
1998�. The principal effect of the shear often appears as a sub-
leading term in scaling and can be taken into account with
modest ingenuity �Arad et al., 1998�.

12As we discuss in detail below, Onsager was unaware of Kol-
mogorov’s work until sometime after the end of June 1945. By
the time of his Florence paper, Onsager had studied Kolmog-
orov’s papers and had this to say: “…a promising start towards
a quantitative theory of turbulence was achieved by Kolmog-
oroff… . For good measure, Kolmogoroff’s main result was
rediscovered at least twice… .” In the second sentence, he was
referring to his own APS abstract �Onsager, 1945c� and to the
papers of von Weizsäcker �1948� and Heisenberg �1948�.
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ity field in such “ideal” turbulence cannot obey any
LIPSCHITZ condition of the form

�26� v�r� + r� − v�r��� �const.�rn

for any order n greater than 1/3; otherwise the
energy is conserved. Of course, under the circum-
stances, the ordinary formulation of the laws of
motion in terms of differential equations becomes
inadequate and must be replaced by a more gen-
eral description; for example, the formulation �15�
�our �32�� in terms of Fourier series will do. The
detailed conservation of energy �17� �our �35�� does
not imply conservation of the total energy if the
number of steps in the cascade is infinite, as ex-
pected, and the double sum of Q�k ,k�� converges
only conditionally.”

These are the closing words of Onsager’s paper and also
his last published thoughts on the subject of singularities
and dissipation for Euler equations.

What did Onsager mean? Clearly he proposed that
there would be singularities of Euler equations, whether
finite-time or otherwise, since he states that “the velocity
field does not remain differentiable” in the inviscid limit
as �→0. This is to be expected if, in that limit, a k−5/3

spectrum develops all the way up to k=�, because such
a slow decay in wave number implies that �v2= +�
and that classical derivatives of the velocity can no
longer exist. More remarkably, Onsager proposed that
even for such a singular limit, the velocity field will sat-
isfy the incompressible Euler equations in a suitable
sense, e.g., Eqs. �32� for the Fourier coefficients will hold
with �=0. Equivalently, the Euler equations will hold if
the derivatives are taken in the sense of distributions. In
that case, Onsager noted that there is a precise, minimal
degree of singularity required to lead to dissipation in
the ideal fluid. If the velocity satisfies a Lipschitz or
Hölder condition with exponent 
1/3, then energy is
conserved. Therefore, to account for the observed dissi-
pation in the inviscid limit, a Hölder singularity of expo-
nent �1/3 must appear at least at some points in the
flow. In this picture, the turbulent velocity fields in the
inviscid limit are continuous, nowhere differentiable
functions, similar to ideal Brownian paths. What is
especially remarkable about Onsager’s claim is that
Kolmogorov’s scaling exponent of 1/3 comes out of a
dimensional argument for all statistical moments of ve-
locity differences, but without direct use of the equa-
tions of motion. Here the exponent 1/3 is shown to have
dynamical significance.

After Onsager’s talk at the Florence meeting, there
was no comment regarding the 1/3 Hölder singularity
claim. In fact, very little note seems to have been taken
of Onsager’s remark for quite a long time. Even J. von
Neumann in his authoritative review article �von Neu-
mann, 1949� does not mention it. There was related but
apparently completely independent work at about the
same time by Burgers �1948�, who proposed a simple
model equation for turbulence which illustrated the pos-
sibility of singularity formation and its relation to energy
dissipation. �See also the earlier work of Wiener �1938�.�

Burgers equation describes a 1D compressible fluid for
which the singularities are simple shock discontinuities
in the velocity profile. This work subsequently attracted
a great deal of attention of both mathematicians and
physicists �Lax, 1972; Frisch and Bec, 2001�. However,
Onsager’s remark seems to have been nearly forgotten,
except by a few experts in turbulence theory. Sulem and
Frisch �1975� proved a related result for the 3D Euler
equations, in Sobolev rather than Hölder spaces. Their
result states that energy is conserved for 3D Euler equa-
tions if the energy spectrum of the solution is steeper
than k−8/3. This theorem neither implies nor is implied
by the Onsager result. For example, a velocity field with
Hölder regularity slightly greater than 1/3 everywhere
would have a spectrum just a little steeper than Kolmog-
orov’s k−5/3 and would conserve energy by Onsager’s re-
sult, but not by that of Sulem and Frisch.

A result close to the one claimed by Onsager was first
proved by Eyink �1994�. The proof was based on the
brief argument sketched by Onsager �1949d� using Fou-
rier series. Total energy conservation for Euler equa-
tions naively follows from the calculation

d

dt�k
a�k�2 = �

k
�
k�

Q�k,k��

=
1
2�

k
�
k�


Q�k,k�� + Q�k�,k�� = 0, �38�

using the detailed conservation �35�. However, this argu-
ment requires reordering the infinite summations over
k ,k�, and that is inadmissable if the series are only con-
ditionally convergent. In that case, the series can give
results that depend on the order of summation. On the
other hand, Onsager’s claim seems to be that the series
are absolutely convergent if the Hölder condition with
exponent n
1/3 is valid. In terms of Fourier coeffi-
cients, the Hölder condition holds if

�
k

kna�k� ��; �39�

see Zygmund �2002�. If absolute convergence follows
from this bound with n
1/3, then the formal calcula-
tion is correct and energy is conserved.

It is not hard to show that conservation of energy is
also implied by a weaker condition on the spectral en-
ergy flux

��K� = − �
k�K

�
k�

Q�k,k�� , �40�

a quantity which measures the flow of energy under the
nonlinear interactions out of a sphere in Fourier space
of radius K. If the double series in Eq. �38� is absolutely
convergent �and thus equals zero�, then

lim
K→�

��K� = 0. �41�

This by itself is enough to conclude that energy is con-
served, but the asymptotic energy flux may be zero even
if the series converges only conditionally. In fact, Sulem
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and Frisch �1975� analyzed energy flux to prove their
theorem. Now it is not hard to check that if condition
�39� holds and, furthermore, if the local triads dominate
in the sum �40� defining the flux, then

��K� = O�K1−3n� . �42�

Therefore Onsager’s conservation claim will be true if
the local interactions indeed dominate in the energy
flux. However, the matter is delicate. In Eyink �1994� a
model velocity field was constructed as a counterexam-
ple which showed that, in some cases at least, ��K�
�K1−2n as K→�. Thus the absolute convergence sug-
gested by Onsager’s 1949 remarks, literally speaking,
does not hold true. The mechanism involved in this
counterexample is the transfer by a small distance in
Fourier space via highly nonlocal triads with one wave
number slightly �K, one slightly 
K, and a convective
mode with very small wave number. Similar interactions
have been seen to dominate in ��K� in numerical simu-
lations of the Navier-Stokes equations �Domaradzki and
Rogallo, 1990; Yeung and Brasseur, 1991�.

Nonetheless, the essence of Onsager’s claim is correct.
For example, if one averages the spectral flux over an
octave band, then local triads do dominate and

�̄�K� =
1

K
�

K

2K

dK���K�� = O�K1−3n� . �43�

This observation yielded the proof by Eyink �1994� of
Onsager’s conservation claim. It was also shown there by
an example that estimate �43� is sharp and cannot be
improved. In particular, constant energy flux is possible
for n=1/3. As a by-product of this analysis, it was also
shown by Eyink �1994� that Onsager’s assertion of local-
ity holds for the averaged flux �43� whenever the velocity
field satisfies Eq. �39� with 0�n�1. This is exactly in
agreement with Onsager’s remark to Lin: “With a hy-
pothesis slightly stronger than �14� the motion which be-
longs to wave-numbers of the same order of magnitude
as k� itself will furnish the greater part of the effective
rate of shear.” Onsager’s Eq. �14� in the Lin note is just
the condition that v2��, ���v�2=�; indeed, velocity
fields satisfying Eq. �39� with 0�n�1 are continuous
but generally nondifferentiable.

The argument by Eyink �1994� still did not quite es-
tablish Onsager’s claim because technically the Fourier
condition �39� is sufficient but not necessary for Hölder
continuity of index n �Zygmund, 2002�. However, shortly
thereafter, Constantin et al. �1994� found a proof of On-
sager’s precise statement and, in fact, proved a sharper
result. We shall discuss their important theorem below.
Here let us just note that their argument was given en-
tirely in physical space and did not use Fourier methods.
More recently, another similar proof was given by Du-
chon and Robert �2000�. Of primary interest is the con-
nection that they established between Onsager’s theo-
rem and another result of turbulence theory, the
Kolmogorov 4/5 law �Kolmogorov, 1941c�. This connec-
tion will also be discussed below.

It is remarkable that Onsager’s claim is exactly cor-
rect, although the hints he gave using Fourier series do
not yield quite the claimed result. It does not seem that
Onsager ever worked through the details of a Fourier
space proof. If so, then what was the basis of his accu-
rate claim? The surprising answer seems to be that
he had a valid proof in physical space and that it was
virtually identical to that of Duchon and Robert �2000�
50 years later! The crucial result, which bears directly on
this question, is Eq. �26� in the Lin note, which appears
again on p. 14 of Folder 11:129 and whose derivation
from the incompressible Euler equations is contained in
pp. 15–20 of the Folder. The derivation is straightfor-
ward and need not concern us in detail �e.g., see Duchon
and Robert, 2000�. If �rv�r��=v�r�+r�−v�r�� is the veloc-
ity increment, then the crucial identity that Onsager de-
rived was

�

�t
� d3rF�r�v�r�� · v�r� + r�

=
1
2 � d3rF��r��r̂ · �rv��rv2. �44�

Here F�r� is a spatial smoothing function assumed to be
spherically symmetric. We have made a few minor sim-
plifications of Onsager’s notations for the sake of clarity.
The motivation for this formula is made more clear by
pp. 19 and 20 of Folder 11:129, reproduced here. On p.
20 �see Fig. 7� Onsager derived a formula expressing
�k��ka�k��2 in terms of an integral of the spatial veloc-
ity correlation. The time derivative of this quantity un-
der the Euler dynamics is just �the negative of� what we
called the energy flux ��k�. However, because of the
sharp cutoff in Fourier space, this results in a highly os-
cillatory integral, which is hard to control. Onsager
solved that problem by using a smooth spectral cutoff
function f�k� with inverse Fourier transform F�r�. Thus
the sum over low-wave-number Fourier modes is written
on p. 19 �Fig. 8� as

�
k

f�k�a�k�2 =� d3rF�r�v�r�� · v�r� + r� , �45�

where �V� may be taken to be a spatial average over r� in
the periodic box.13 Notice that the oscillatory integral is
now replaced by an integral with respect to the spatial
smoothing function F�r�. The negative of the time de-
rivative of Eq. �45� defines a scale-averaged energy flux
similar to Eq. �43�, and it is exactly this time derivative
that appears on the left-hand side of Onsager’s funda-
mental relation �44�. Now, if one assumes that �rv
=O�rn� and if F filters out scales ��, then the overall
scaling of the right-hand side of Eq. �44� is O��3n−1�
�where the −1 comes from the derivative on F�, which

13Onsager’s calculations started off with the assumption that
this was an ensemble average. However, in the course of his
proof of Eq. �44� he dropped this bar and replaced it with a
spatial average only.
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FIG. 7. Page 20 of Folder 11:129 �Onsager, circa 1945�. Onsager divided the page by two lines. Above the top line the two-point
correlation function of the velocity field is written as a Fourier transform of the energy spectrum �Wiener-Khinchin theorem�.
Between the two lines is the inverse relation, giving the energy spectrum in terms of the correlation function. Below the bottom
line, Onsager used this result to derive a corresponding formula for the total energy in Fourier modes with wave-number
magnitude less than k. Reproduced courtesy of the Onsager Archive, NTNU.
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vanishes as �→0 if n
1/3. This is exactly a space-
integrated form of the argument used by Duchon and
Robert �2000� to prove Onsager’s stated result about n
=1/3. As we shall discuss later, virtually the same argu-
ment appears at the end of the note to Lin. It is hard to
avoid the inference that this was the basis for the claim
in Onsager �1949d�.

The basic identity �44� is closely related to an expres-
sion derived by von Kármán and Howarth �1938�, which
is one of the references cited at the beginning of Folder
11:129. Moreover, Onsager’s identity is an exact analog
of the 4/5 law derived by Kolmogorov in the third of his
1941 papers �Kolmogorov, 1941c� making use of the ear-
lier calculation of von Kármán and Howarth �1938�. Kol-
mogorov assumed homogeneity and isotropy of turbu-
lence, and also, crucially, that energy dissipation remains
finite in the limit as viscosity tends to zero. A good deri-
vation of the 4/5 law is given in the book by Frisch
�1995� �which is essentially identical to the calculation of
Onsager�. He first derived a form of the law assuming
homogeneity alone without isotropy, which in Frisch
�1995� was called the Kolmogorov-Monin relation

�r · �rv�rv2 = − 4Q . �46�

Here, as before, Q represents the energy dissipation per
unit mass, which is assumed to remain positive in the
inviscid limit. To get Onsager’s identity—in a statistically
averaged sense—one must simply integrate both sides of
Eq. �46� with respect to F�r� and use �rF�r�=F��r�r̂. The
identity derived by Kolmogorov also used isotropy and
was in the form

�r̂ · �rv�3 = −
4
5

Qr . �47�

This is the classical statement of the 4/5 law �Kolmog-
orov, 1941c�. It is noteworthy that Lin remarked to On-
sager in his reply on June 26, 1945 that the “cascade
process of the dissipation of energy in turbulence can
also be seen from an equation derived rigorously from
the Kármán-Howarth equation” �Lin, 1945b�—referring
to an exact equation derived by Lin himself for the evo-
lution of the energy spectrum—but did not point out its
relation to Eq. �26� in Onsager’s note.

The proof by Duchon and Robert �2000� in
fact yielded an important generalization of Onsager’s
result and of the Kolmogorov-Monin relation.
Under a very modest assumption—namely, that
�0

Tdt�d3rv�r , t�3��—they proved that a singular solu-
tion of the incompressible Euler equations satisfies a lo-
cal energy balance

�t
1
2

v2 + � · ��1
2

v2 + p�v	 = − D�v� . �48�

The derivatives in this equation must be interpreted in
the sense of distributions. If the Euler solutions are
smooth, then the right-hand side will be zero, implying
conservation of the energy. In general, however, that
term need not vanish. Duchon and Robert established
for it the identity

FIG. 8. Page 19 of Folder 11:129 �Onsager, circa 1945�. A smoothed version of the Wiener-Khinchin theorem employing a spectral
filtering function f�k� with inverse Fourier transform F�r� in physical space. Reproduced courtesy of the Onsager Archive, NTNU.
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D�v� = lim
�→0

1
4 � d3r�rF��r� · �rv�rv2, �49�

where F��r�= �1/�3�F�r /��. Thus this term represents the
energy flux asymptotically to zero length scale. If the
Euler solution is obtained as a zero-viscosity limit of a
Navier-Stokes solution, then it is also true that14

D�v� = lim
�→0

��v2 � 0. �50�

Combining the two expressions for D�v� gives a space-
time local form of the Kolmogorov-Monin relation. Du-
chon and Robert proved furthermore that

D�v� = lim
r→0

−
3

4r
��r̂ · �rv��rv2�ang, �51�

where � �ang denotes a spherical average over the direc-
tion vector r̂. This is a local form of what is now called
the “4/3 law” in turbulence theory. Eyink �2003� has
shown that the term D�v� can also be expressed as a
local form of the original Kolmogorov 4/5 law.

In a paper on two-dimensional turbulence,15 Polyakov
�1993� pointed out an interesting analogy of the 4/5 law,

and corresponding laws in 2D turbulence, to
conservation-law anomalies in quantum field theory,
e.g., the axial anomaly in quantum electrodynamics. In
particular, the derivation of the 4/5 law from the dynam-
ics of the two-point velocity correlation—as in Onsager’s
unpublished notes—was rediscovered by Polyakov who
pointed out its similarity to Schwinger’s derivation
�Schwinger, 1951� of the axial anomaly by a �gauge-
invariant� point-splitting regularization. In the case of
the axial anomaly one obtains a local balance for axial
charge as

��J5
� = 2mJ5 + D�A� . �53�

This equation is to be interpreted in the sense of the
Heisenberg equations of motion for �renormalized� local
composite field operators

J5
� = �̄���5�, J5 = i�̄�5�, D�A� =

 

2�
F̃��F

��. �54�

See Itzykson and Zuber �1980�, for example, for relevant
definitions and notations. If the mass m=0, then axial
charge would be conserved if D�A� were zero. The fact
that it is not zero has physical consequences, such as the
electromagnetic decay of the neutral pion �0→��
�Adler, 1969; Bell and Jackiw, 1969�.

The local balance equation �48� derived by Duchon
and Robert �2000� for singular Euler equations is similar
in structure to the anomalous conservation equation �53�
in quantum gauge theory. Therefore we believe that On-
sager’s result on dissipative Euler solutions does have
some analogy to anomalies in quantum field theory. In
fact, the term D�v� in Eq. �48� is nowadays often re-
ferred to in the turbulence literature as the dissipative
anomaly. However, there are also some important differ-
ences between the dissipative anomaly D�v� in turbulent
solutions of Euler equations and the axial anomaly D�A�
in quantum gauge theory. For example, we have seen
that the dissipative anomaly is always non-negative,
D�v��0, whereas the axial anomaly can have either
sign. The axial anomaly is also formally a total diver-
gence D=��K� with K�= � /2��!����A�F��. Its global
integral is only nonzero for topologically nontrivial
gauge fields A, related to the Atiyah-Singer index theo-
rem �Jackiw and Rebbi, 1977; Nielsen and Schroer,

14Here we assume that there are no singularities in the solu-
tion of the Navier-Stokes equation at any small, but finite, vis-
cosity. Otherwise the statement of this result must be slightly
generalized �Duchon and Robert, 2000�.

15A brief comment about 2D turbulence may be in order
here. Onsager �1949d�, in the first paragraph of the section on
turbulence, pointed out that “the enhanced dissipation which
takes place in turbulent motion cannot be explained by any
mechanism of two-dimensional convection.” After considering
the energy balance relation �28� for incompressible hydrody-
namics, he pointed out that “two-dimensional convection,
which merely redistributes vorticity, cannot account for the
rapid dissipation.” Thus, as Onsager already observed, there
can be no forward energy cascade and no dissipative anomaly
for energy in two-dimensional flow. Related observations were
made by von Neumann �1949�, Lee �1951�, Fjørtoft �1953�, and
Batchelor �1953�, Sec. 8.4, all using the fact that enstrophy, or
mean-square vorticity,

��t� =
1
2 � d2r�2�r,t� , �52�

is a conserved quantity for smooth 2D Euler flows. However, it
was later observed by G. K. Batchelor, in work with his student
R. W. Bray �1966�, that there may be a forward enstrophy
cascade and a corresponding dissipative anomaly for enstrophy
in two-dimensional flow. They predicted a high-wave-number
energy spectrum Z2/3k−3 in such two-dimensional turbulence,
where Z= ����2� is the mean rate of dissipation of enstrophy.
This theory was published only somewhat later by Batchelor
�1969� and, in the meantime, independently by Kraichnan
�1967�. Furthermore, Kraichnan in the latter paper pointed out
that this cascade of enstrophy to high wave numbers should
coexist with an inverse energy cascade to low wave numbers,
corresponding to a Kolmogorov-type energy spectrum
Q2/3k−5/3 but now with energy flux Q�0. For more about
this “dual cascade picture” of two-dimensional turbulence,
see Sec. 9.7 of Frisch �1995� and references therein. It is
now known that the 2D Euler equations have no finite-time

singularities starting from smooth initial data �e.g., Rose and
Sulem, 1978� and thus a dissipative anomaly for enstrophy in
freely decaying 2D turbulence requires starting with suffi-
ciently singular initial data �Eyink, 2001�.

Onsager never considered such two-dimensional turbulent
cascades in any of his published works. However, it is interest-
ing to observe that p. 7 of Folder 11:129 of his unpublished
notes contains the two-dimensional Navier-Stokes equation for
the vorticity field in Fourier representation. This suggests that
Onsager was considering the triadic interactions of the vortic-
ity field that lead to enstrophy cascade. Of course, Onsager
�1949d� had also pointed out the tendency of energy in two-
dimensional flow to accumulate into large-scale vortex struc-
tures and this is one of the prior works which helped lead
Kraichnan �1967� to his theory of the inverse energy cascade.
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1977�. The dissipative anomaly for Euler equations does
not have such a topological interpretation.

C. Intermittency and anomalous scaling

We now discuss the strengthening of Onsager’s theo-
rem due to Constantin et al. �1994�, although only inso-
far as it ties into our next subject, anomalous scaling. A
physical interpretation of their method from the point of
view of nonequilibrium thermodynamics is given by Ey-
ink �1995b�. What we emphasize here is that they gave
the first proof of the theorem under Onsager’s precise
Hölder continuity condition and, in fact, under a sharper
condition involving Besov spaces; for example, see Ey-
ink �1995a�. The Besov space Bp

s is very simply defined:
it consists of functions that are Hölder continuous with
index s, not pointwise but in the sense of spatial
pth-order moments

�� d3r�v�r� + r� − v�r��p	1/p

� �const�rs. �55�

The result of Constantin et al. �1994� is that a singular
solution of the Euler equations will conserve energy if
the velocity field has Besov regularity with s
1/3 for
any p�3. Since the Besov spaces for p=� coincide with
the classical Lipschitz-Hölder spaces, the result of Con-
stantin et al. includes that of Onsager as a special case. It
is interesting to point out, however, that Onsager’s own
unpublished identity also suffices to derive the Besov
result �or even a slight improvement, as noted by Du-
chon and Robert �2000��. The theorem of Constantin et
al. also includes the Sobolev space result of Sulem and
Frisch �1975� since velocity fields in three-dimensional
space with an energy spectrum steeper than k−8/3 belong
to the Besov space B3

s for some s
1/3 by a standard
embedding theorem �e.g., see Eyink, 1995a�.

One of the interests of the Besov space improvement
of Onsager’s result has to do with the phenomenon of
small-scale intermittency in turbulence. The original
mean-field theory of Kolmogorov �1941a, 1941b, 1941c�
and the others �Obukhov, 1941a, 1941b; Onsager, 1945c,
1949d; Heisenberg, 1948; von Weizsäcker, 1948� pre-
dicted that all pth-order moments should scale according
to dimensional reasoning based on mean dissipation

�rvp � �Qr�p/3. �56�

However, it was later hypothesized by Kolmogorov
�Kolmogorov, 1962�, and then confirmed subsequently
by experiment �Anselmet et al., 1984; Chen et al., 2005�,
that these scaling laws also depend upon the large length
scale L as

�rvp � �Qr�p/3�r/L��p � Vp�r/L�"p, �57�

for r#L, with "p= �p /3�+�p. Thus the �p’s are anomalous
dimensions in the sense of quantum field theory or criti-
cal phenomena. From a physical point of view, �p�0
means that the statistics at the small scales have fluctua-
tions growing in each cascade step and hence remember
the total number of steps from large scale L to small

scale r. A particular consequence is that the energy spec-
trum decays faster than k−5/3 with

E�k� � Q2/3k−5/3�Lk�−�2, �2 
 0, �58�

corresponding to the Fourier transform of Eq. �57� for
p=2.

A modern interpretation of anomalous scaling of ve-
locity increments is the multifractal model proposed by
Parisi and Frisch �1985�. According to this picture, the
turbulent velocity field in the zero-viscosity limit re-
mains Hölder continuous, as conjectured by Onsager.
However, according to the multifractal model there is an
entire spectrum of Hölder exponents �hmin,hmax� and the
set of points S�h� with exponent h, for each h in this
interval, forms a fractal set with Hausdorff dimension
D�h�. In that case, the probability of a velocity incre-
ment �rv�r�� having r� in S�h� scales as �r /L�d−D�h� in d
dimensions, while at those points �rv�r���V�r /L�h.
Therefore a simple steepest descent calculation gives

�rvp � Vp�
hmin

hmax

d��h�� r

L
�ph+�d−D�h��

� Vp�r/L�"p,

�59�

for r#L, with

"p = min
h��hmin,hmax�


ph + �d − D�h��� . �60�

For a more detailed discussion of the multifractal model,
see Frisch �1995�. In this language, Onsager’s theorem
on Euler equations is the statement that dissipation re-
quires hmin�1/3. The Besov space improvement by
Constantin et al. �1994� is the statement that dissipation
also requires "3�1. A precise formulation and math-
ematical proof of validity of the multifractal model re-
mains, of course, an open question. For some relevant
comments, see Yakhot and Sreenivasan �2004�. For some
recent investigations purely at the level of function
spaces, without the use of the fluid equations, see Jaffard
�2001�.

It is remarkable that Onsager was led to similar views
about local Hölder regularity of turbulent velocities
based on relatively weak empirical evidence about en-
ergy dissipation and its explanation by the Euler fluid
equations. His proposal was 40 years earlier than that of
Parisi and Frisch, who were led to their views based on
empirical evidence about anomalous scaling laws. On
the other hand, Onsager gave no hint in any of his pub-
lished works �Onsager, 1945c, 1949d� that he anticipated
the phenomenon of intermittency and its potential to
alter his proposed turbulence scaling laws. There is some
irony in this since it was Onsager’s exact solution of the
2D Ising model �Onsager, 1944� which gave conclusive
evidence of anomalous scaling corrections to Landau’s
mean-field theory of critical phenomena �Landau, 1937a,
1937b�. Of course, the physical role of fluctuations near
the critical point was only widely appreciated after the
work of Levanyuk �1959� and Ginzburg �1960� and not
directly from the mathematical solution of the Ising
model. Therefore it might be thought that Onsager did
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not realize that fluctuations could invalidate his own
“mean-field theory” on turbulence scaling �Onsager,
1945c, 1949d�.

Quite the contrary is the case, as shown by the Lin
note. Onsager wrote on p. 16 as follows:

“As far as I can make out, a more rapid decrease
of ak

2 with increasing k� would require a ‘spotty’
distribution of the regions in which the velocity
varies rapidly between neighboring points.”

Thus he clearly anticipated the faster spectral decay in
our Eq. �58�, and, moreover, understood its physical ori-
gin. This is made even more clear by Onsager’s deriva-
tion of the 2/3 law in the Lin note, based upon his iden-
tity �26� there �our Eq. �44��. We quote at length from
this remarkable passage:

“Now put
F� �r�� = 3/4�a�3; �r�� a��
F� �r�� = 0; �r�
 a��.

Then for small a� the left member of �26� is practi-
cally

�v2/�t�
and the right member is at most of the order

�Dr�v�3/r�r=a.

Moreover, obviously,

Dr�v�2 = 2v2�1 − R�r��.
Now the estimate �21� is a minimum hypothesis
unless the mean cube of Dr�v� consists mainly of
contributions from exceptional regions of small
aggregate volume.”

We note that F�r� is the spatial filtering function that
appears in Eq. �26�, Dr�v� is Onsager’s notation for the
velocity increment �rv, R�r� is the velocity correlation
function, and Eq. �21� in the Lin note is the 2/3 law �our
Eq. �56� with p=2�. Onsager chooses F�r� to be a “box
filter,” uniform on the sphere of radius a. He then ob-
serves that for small enough a, the left side of his iden-
tity �26� will be −2Q, which corresponds to the condition
of constant energy flux. But, in that case, �rv3 can be
no smaller than O�r�. Onsager then refers to it as a
“minimal hypothesis” that �rv2�r2/3. This closely par-
allels one of the derivations of the 2/3 scaling that Kol-
mogorov presented in his third paper �Kolmogorov,
1941c� using the linear scaling from the 4/5 law. Kol-
mogorov’s basic assumption was of self-similarity, which,
with the linear scaling of the third-order structure func-
tion, implies a 2/3 power for the second-order structure
function. Onsager’s assumption leading to the 2/3 scal-
ing was closely related, namely, that spatial fluctuations
are negligible and that averages do not come “from ex-
ceptional regions of small aggregate volume.”

Furthermore, Onsager continues to Lin:

“You can get the formula suggested by G. I.
Taylor:

1 − R�r� � r
if you make the extreme assumption that the vor-
ticity is distributed in sheets of comparable inten-
sity and finite total area. However, the discontinui-
ties would give rise to oscillograms of a striking
rectangular structure, rather unlike those which I
have seen.”

There is a related page of notes in Folder 11:129, p. 21,
immediately following Onsager’s derivation of Eq. �44�.
There he writes that it is a consequence of “dynamics”
that �rv3=O�r� and of “Taylor” that �rv2=O�r�. It is
interesting that this page seems to originate from a pe-
riod when Onsager was trying to determine the possible
scaling exponents. The exponent 1 in the linear scaling
laws was originally another value, apparently 2, which
was then scratched out. The rest of this page seems to
contain an investigation of the statistical realizability of
the scaling relations at the top of the page. Onsager may
have been wondering whether the linear scaling for
�rv2 proposed by Taylor �1938� could be consistent with
the linear scaling for �rv3 that he had derived from Eq.
�44�. If so, he seems to have realized by the time he
wrote to Lin that such scalings are indeed compatible if
velocity increments of finite amplitude are supported en-
tirely on sheets or shock surfaces in three-dimensional
space. This is exactly what occurs for Burgers equation
�Burgers, 1948�. In fact, that model exhibits so-called bi-
fractal statistics of increments in every space dimension
d, with just two Hölder exponents: h=0 corresponding
to shocks on sets of dimension D�0�=d−1 and h=1 cor-
responding to the rest of space where velocity is smooth
with dimension D�1�=d �Frisch, 1995; Frisch and Bec,
2001�. This leads to linear scaling for structure functions
of both second and third orders. However, Onsager
notes that such scaling is unlikely for fluid turbulence
based on the evidence from empirical time series.

Thus it is clear that Onsager realized already by 1945
that spatial fluctuations in the regularity of the velocity
field could vitiate his proposed 2/3 scaling for the
second-order structure function. Another hypothesis
was needed, namely, that the region of large velocity
increments is not “spotty” but instead uniform through-
out space. It is quite surprising, again, that Onsager did
not mention any of these considerations, contained in
the Lin note, in his published paper �Onsager, 1949d�
four years later. The first recognition of a possible cor-
rection to Kolmogorov 1941 scaling due to intermittency
is often attributed to L. D. Landau in his famous remark
at a 1942 meeting in Kazan and in a related remark that
appeared as a footnote in the first 1944 edition of his
textbook on fluid mechanics with Lifschitz �Landau and
Lifschitz, 1987�. However, Landau’s remarks are very
brief and open to different interpretation, and it is not
clear that he was referring to intermittency for small-
scale increments, despite the fact that Kolmogorov
�1962� gave Landau considerable credit. For an excellent
discussion of this issue, see Frisch �1995�, Chap. 6.4. On
the other hand, Onsager’s statements are clearly and un-
ambiguously about such intermittency and its effect on
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short-distance scaling laws of velocity increments.
To what extent did Onsager in the 1940s fully antici-

pate later work on anomalous scaling in turbulence?
There are, of course, many elements of modern theories
that he missed. Unlike Kolmogorov �1962� 20 years later,
Onsager did not consider scaling of pth-order moments
of velocity increments for general p but only for p=2
and 3. There is also nothing in any of Onsager’s papers
that we have seen at all suggestive of the “refined simi-
larity hypothesis” proposed by Kolmogorov �1962�. This
hypothesis relates the anomalous scaling of velocity in-
crements to intermittency of viscous energy dissipation
and it has played a key role in many modern approaches
to the problem of turbulent scaling laws �Stolovitzky et
al., 1992�. For example, see Frisch �1995� for details. On-
sager’s ideas were much closer to those of the multifrac-
tal model of Parisi and Frisch �1985�, formulated entirely
in terms of velocity increments and not involving dissi-
pation �whose multifractality was explored extensively—
see Meneveau and Sreenivasan �1991��. Furthermore,
there was nothing fractal in any of Onsager’s consider-
ations. Even Onsager’s Burgers-like bifractal example in
the Lin note involves sets only of integer-valued dimen-
sion �d and d−1 in space dimension d�. The first use of
fractal �and multifractal� concepts in discussing turbu-
lent intermittency was by Mandelbrot �1969, 1972, 1974�
who cast the ideas of Kolmogorov �1962� and others of
the Russian school in that framework. Nevertheless,
while Onsager certainly did not foresee every element of
our modern understanding, it is remarkable that he per-
ceived so clearly and so early the possibility of spatial
intermittency and its effect on turbulent scaling laws.

D. A closure for the energy spectrum

Folder 11:129 of Onsager’s notes from the 1940s con-
tains one more memorable result, which is not discussed
in any of his letters or publications. In the remaining five
pages of the notes from that folder, pp. 23–27, Onsager
sketches very succinctly the derivation of a spectral en-
ergy closure, which is remarkably similar to the
EDQNM �eddy-damped quasinormal Markovian� clo-
sure that was proposed by Orszag �1970, 1977�. The
EDQNM approximation was itself the end result of a
long line of analytical closures which went back to the
work of Proudman and Reid �1954� on the quasinormal
closure, of Kraichnan on the direct-interaction approxi-
mation �Kraichnan, 1959� and the test-field model
�Kraichnan, 1971�, and of others as well.

We reproduce here two of these five pages from
Folder 11:129, pp. 23 and 24. Page 23 �see Fig. 9� con-
tains the main result, while the later pages contain sup-
porting calculations. Onsager’s basic idea is simple: he
isolated the effect on energy transfer out of wave num-
ber k due to a single distinguished triad k, k�, k�. As he
had already discussed in his Lin note and in the 1949
paper, the convective wave number in the triad, k�, say,
plays a purely passive role, simply catalyzing transfer
between k and k�. Therefore he froze the Fourier am-
plitude a�k�� of that mode, leading to a linear equation

for the other two modes. This is the 4�4 matrix system
that he considered on p. 24 �see Fig. 10�. As a first ap-
proximation, he ignored the contribution of the pressure
term �with just a remark on p. 26 on how it may be
included�. On the pages which follow, Onsager diagonal-
ized the 4�4 matrix and found the exact solution u�k , t�
of the linear problem. The details of this need not con-
cern us, just the final result for u�k , t�2, written at the
top of p. 23. Onsager expanded this result to second
order in time t, and used this to calculate an approxima-
tion to the time derivative

d

dt
a�k�2 = �2��2t
k� · a�k − k��2 + k� · a�k + k��2�

� �a�k��2 − a�k�2� + O�t2� . �61�

After averaging over a homogeneous ensemble and dis-
carding fourth-order cumulants, as in the quasinormal
closure �Proudman and Reid, 1954�, the moments in-
volving distinct wave numbers also factorize to leading
order, e.g.,

a�k��2a�k�2 = a�k��2 a�k�2 �1 + O�1/V�� . �62�

This is like the weak-dependence property used by
Kraichnan �1959�. Finally, Onsager made a bold approxi-
mation. Embedding the single triadic contribution in the
sea of other triads, he assumed that the only effect was
to replace the “bare” time t by an effective turnover
time �k,k�, which depends upon the triad. The final result
was

d

dt
a�k�2 = �2��2�

k�

�k,k��k� · a�k − k��2

+ k� · a�k + k��2� � �a�k��2 − a�k�2� .

�63�

This equation is now closed in terms of the energy spec-
trum. If �k,k� is symmetric in its dependence on the wave
numbers’ magnitudes k, k�, k�, then this equation will
exactly conserve energy because of a cancellation be-
tween “input” terms a�k��2 and “output” terms
a�k�2. The final result is very similar to EDQNM
�Orszag, 1977� nearly 30 years before that closure would
appear in the literature. Furthermore, the derivation it-
self is very close to one used by Fournier and Frisch
�1978�, Chaps. II and III, to obtain EDQNM. The argu-
ment and result would have been identical if Onsager
had included the contribution of the pressure and also
allowed the convective mode to evolve.

What is especially interesting from a historical point
of view is that Onsager returned to this problem in the
1970s and worked to refine his closure. The relevant ma-
terial is contained in Folders 11:132 and 11:135 from the
Onsager Archive, which we have dated to the years
1973–1976. By that time, Onsager had left Yale for the
University of Miami and was working mainly on the
problem of the origin of life �Onsager, 1974b�, statistical
mechanics of water and ice �Onsager, 1973, 1974a; Chen
et al., 1974; Staebler et al., 1978�, and his lifelong favorite
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FIG. 9. Page 23 of Folder 11:129 �Onsager, circa 1945�. The first equation is the exact solution of the 4�4 system on p. 24. This
is Taylor expanded in time, ensemble averaged, and differentiated to yield an expression for the evolution of the spectrum. The
last equation is Onsager’s closure equation, with the “bare” time t replaced by an effective “turnover” time �k,k�. Reproduced
courtesy of the Onsager Archive, NTNU.
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topic, electrolyte theory �Hubbard and Onsager, 1977;
Onsager and Chen, 1977; Onsager and Kim, 1977; On-
sager et al., 1977�. However, as we see from the contents
of the folders, he had also returned to the study of tur-
bulence. In this new attempt, he correctly incorporated
the pressure effects and permitted the evolution of the
convective modes. However, the method of derivation
was slightly changed. In his new approach Onsager di-
rectly studied the time derivative �d /dt�Qk,k�, with Qk,k�
given by Eq. �34� above. Actually, that expression con-
tains four terms, of which he studied just one represen-
tative term −�i�a�k−k�� ·k���a�k�� · �−k��, which he
called Qk,k�. Since the latter is cubic in Fourier ampli-

tudes, its time derivative is quartic. The derivative can
be divided into two contributions:

d

dt
Qk,k� = − �i�ȧ�k − k�� · k���a�k�� · a�− k��

− �i�a�k − k�� · k��
�ȧ�k�� · a�− k��

+ �a�k�� · ȧ�− k��� . �64�

The first one contains the derivative of the passive con-
vective mode, which was neglected before, while the sec-
ond contains the derivative of the active modes involved
in the transfer.

FIG. 10. Page 24 of Folder 11:129 �Onsager, circa 1945�. The four linear equations at the top of the page give the evolution of the
Fourier modes u�k�, u�k�� and their complex conjugates when the amplitude of the third leg of the triad k� is “frozen.” The
pressure force is omitted in this calculation. Reproduced courtesy of the Onsager Archive, NTNU.

112 G. L. Eyink and K. R. Sreenivasan: Onsager and the theory of hydrodynamic turbulence

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



We show three key pages of Folder 11:132 which give
the idea of Onsager’s treatment �pp. 4–6; see Figs. 11 and
12�. On pp. 4 and 5 he calculated the first term in Eq.
�64� as a sum over all triads. However, he immediately
singled out the term coming from the same triad k, k�,
k� as that represented in Qk,k� itself and proposed that
the rest of the triadic interactions may be treated as
“random.” This is very reminiscent of the direct-
interaction approximation devised by Kraichnan �1959�
in which only direct feedback loops of triads are re-
tained. Eventually Onsager argued that the entire con-
tribution from the derivative of passive modes was neg-
ligible �p. 21�. On p. 6, he treated the second term in Eq.
�64� from the derivative of active modes in a similar
fashion, keeping only the contributions from “direct in-
teractions.” The result was quite similar to that in the
1940s notes except for two additional terms that came
from pressure forces. Later in these notes �p. 17� On-
sager evaluated the pressure terms and showed that they
give a result of the same form. From this point the argu-
ment was similar to that of the notes in Folder 11:129—
Onsager used the approximate formula for the time de-
rivative to make an expansion of Qk,k� to first order in
time. Replacing the bare time t by an effective turnover
time ��k ,k�� gave Onsager’s final result on p. 16. It is
equivalent, except for the prefactor, to the original for-
mula from the 1940s:

Qave�k,k�� =
2�2

3
��k,k��

k2k�2 − �k · k��2

k − k�2

�a�k − k��ave
2 �a�k��2 − a�k�2�ave. �65�

Here the subscript “ave” indicates ensemble averaging.
Onsager also wrote down on p. 16 an expression for the
effective turnover time as ��k ,k��=�Q−1/3�k4/3+k�4/3

+k�4/3�−1/2. This is very similar to the expression now
usually adopted in EDQNM �Orszag, 1977�.

A final topic treated in Folder 11:132 is wall-bounded
flow. Onsager had long taken an interest in this subject,
particularly through the work of the oceanographer R.
B. Montgomery, whom he cited both in the Lin note and
in Onsager �1949d�. Montgomery experimentally inves-
tigated turbulent boundary layers, measuring both mean
profiles and two-point correlations. Pages 9–12 of Folder
11:132 contain a very transparent construction of exact
wave mode solutions of the linear Stokes equation for
flow between two infinite, parallel plates, with exponen-
tial decay in time. The solutions are free plane waves
along the horizontal direction and satisfy no-slip bound-
ary conditions at the surface of each plate. The solutions
are classified into even and odd sets under reflection
about the center plane between the plates. For a given
set of horizontal wave numbers  ,� and decay constant
k, the even solutions have the form

vx = ei� x+�y�
ax cosh�� 2 + �2z�

+ bx cos��k2 −  2 − �2z�� ,

vy = ei� x+�y�
ay cosh�� 2 + �2z�

+ by cos��k2 −  2 − �2z�� ,

vz = ei� x+�y�
az sinh�� 2 + �2z�

+ bz sin��k2 −  2 − �2z�� , �66�

and the odd solutions exchange sin↔cos, sinh↔cosh.
Onsager worked out a dispersion relation between the
complex frequency k and the horizontal wave numbers
 ,�. He also observed a set of selection rules for triadic
interactions between these modes, with only even-even-
even and even-odd-odd as possible. Considering the
context of the rest of the notes, it is possible that he was
thinking of using these modes as the basis for an
EDQNM-type analysis of turbulent channel flow.

In view of the effort that Onsager was expending on
these notes in the 1970s, it appears that he may have
been considering an article on the subject of his old
spectral turbulence closure from his notes in the 1940s.
Since that was the only part of his turbulence research
which had never seen publication in any form, it might
have been the part he felt most important to get out. If
so, it is unlikely that he was aware of the closely parallel
work of Orszag at about the same time �Orszag, 1970,
1977� or of the large body of related work by Kraichnan
�Kraichnan, 1959, 1971� and others, which had appeared
in the decades since he last worked on the subject. It was
apparently Onsager’s habit to first work out his own
ideas and then to check the literature to see what others
had done. It is remarkable that Onsager had already
discovered the basic ideas of EDQNM on his own in the
1940s, but it is also clear that by the early 1970s the
subject of spectral turbulence closures had surpassed his
individual efforts.

V. CONCLUSIONS

A. Historical questions

We hope that a reader, if he is not an expert on tur-
bulence, will have learned something interesting about
this theoretically fundamental and practically important
problem. As for the turbulence experts, we hope that
they have learned some history of their subject that,
probably, comes to them as a bit of a surprise. It cer-
tainly did to us. We believe that the evidence presented
here convincingly shows that Onsager made four re-
markable discoveries in the 1940s which, for some rea-
son, he chose not to publish. First, we have shown that
he carried out detailed calculations on the equilibrium
statistics of 2D point vortices, deriving, in particular, the
critical energy for onset of negative temperatures, the
energy-temperature relation for large positive tempera-
tures, and a mean-field Poisson-Boltzmann equation.
Second, he derived a relation between the second- and
third-order velocity structure functions related to the
Kolmogorov 4/5 law, which is sufficient to prove his
published claim on inviscid dissipation and 1/3 Hölder
singularities. Third, he realized the possible violation of
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FIG. 11. Page 4 of Folder 11:132 �Onsager, circa 1975�. The top equation is the representative term of the transfer function Qk,k�
and the third equation is the part of its time derivative coming from the evolution of the passive, convective mode. In the fourth
equation, Onsager selected out the direct interactions and lumped together the contributions of other triads as “�Random?�.” The
final result was truncated due to lack of space and rewritten on the following page. The numbers at the top right corner are his own
pagination of this set of notes. Reproduced courtesy of the Onsager Archive, NTNU.
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FIG. 12. Pages 5 and 6 of Folder 11:132 �Onsager, circa 1975�. The first two equations shown are the continuation of Onsager’s
formulas from the previous page in a short half page �numbered “3” in his own pagination�. The next page contains a similar
discussion as the preceding one, but for the part of the time derivative of Qk,k� coming from the evolution of the active, convected
modes. In the third equality, the contribution of the direct interactions was singled out and the remainder labeled as “R”
�presumably meaning “random”—see previous page�. Reproduced courtesy of the Onsager Archive, NTNU.
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his mean-field scaling laws for turbulent velocity incre-
ments due to small-scale intermittency and he foresaw
aspects of the modern multifractal model. Fourth, he
worked out a spectral energy closure closely related to
EDQNM, using ideas and methods similar to those that
were discovered later by others. These are in addition to
Onsager’s contributions in his published abstract and ar-
ticle for which he is already justly famous in the field.
From a consideration of both the published and unpub-
lished works, it is clear that Onsager anticipated several
important theoretical developments in turbulence of the
last 50 years.

One obvious question is: why did he not publish his
four results? There are various possible answers.

First, Onsager was, in the 1940s and later, a very busy
man. Consider that in the decade 1945–1955 alone On-
sager published papers of fundamental importance on
liquid diffusion �Onsager, 1945d�, nematic order for rod-
shaped colloids �Onsager, 1949c�, correlations in the 2D
Ising model �Onsager and Kaufman, 1947; Kaufman and
Onsager, 1949�, isotope separation �Watson et al., 1949�,
the de Haas–van Alphen effect �Onsager, 1952, 1953a�,
the Gouy diffusion method �Gosting and Onsager, 1952�,
fluctuations in irreversible processes �Machlup and On-
sager, 1953; Onsager and Machlup, 1953�, liquid helium
�Onsager, 1953b�, and conductance of strong electrolytes
�Fuoss and Onsager, 1955� in addition to his work on
turbulence �Onsager, 1945c, 1949d�! Clearly he had very
limited time to write up all his ideas. In fact, some of his
most famous results of this period were not formally
published, including quantization of circulation in super-
fluids �Onsager, 1949a� and spontaneous magnetization
and long-range order in the 2D Ising model �Onsager,
1949b�. Even at the best of times, Onsager was never
quick to rush into print. The results of his work with
Machlup on path functionals for fluctuations of time his-
tories �Machlup and Onsager, 1953; Onsager and Mach-
lup, 1953� were already announced in brief at the end of
his second paper on reciprocal relations �Onsager,
1931b�, as an “it is also possible to show” remark. Like-
wise, he wrote at the end of a paper �Onsager, 1939a� on
electrostatic interactions of molecules “incidentally, it is
possible to show” that Pauling’s estimate of the residual
entropy of ice is a rigorous lower bound, but he pub-
lished the proof only in Onsager and Dupuis �1960�. It is
quite possible that Onsager planned to publish some of
the four results on turbulence that we have uncovered—
when he was ready.

Another factor which may have played a role in On-
sager’s reluctance to publish was the either cool or
baffled reception that his work received in both the fluid
dynamics and statistical-mechanics communities. We re-
view here the essentials of what the sources reveal.

In Onsager’s day, the top turbulence expert in the
United States was T. von Kármán. As we have seen,
Onsager first communicated with C.-C. Lin, who was
von Kármán’s student, because Lin’s pioneering papers
on point-vortex dynamics and stability of parallel flows
played an important role in his ideas on the subject. A
month later, on July 25, 1945, Onsager sent a letter di-

rectly to von Kármán. He enclosed both the Pauling and
Lin notes, as well as two of his reprints. One of these
was a review paper on concentrated electrolytes �On-
sager, 1933� which discussed, among other things,
Debye-Hückel theory and the Poisson-Boltzmann equa-
tion. He also included his 1931 papers on reciprocal re-
lations �which, in the course of time, won Onsager the
Nobel Prize�. However, von Kármán was decidedly un-
impressed. On August 23, 1945 he wrote a very brief
letter to Lin, which we quote in full �von Kármán, 1945�:

“I received a letter and a kind of manuscript from
a certain Mr. Lars Onsager. I find his letter some-
what ‘screwy’ so I would be glad to have your
opinion whether the paper is worthwhile reading.
Perhaps you could indicate to me in a few lines
what the idea is, if any.”

Lin replied to von Kármán with a three-page letter on
September 4, 1945 �Lin, 1945a� summarizing and evalu-
ating Onsager’s work. First, Lin reported the results of
his queries to physicist P. Epstein and others at Caltech
that Onsager had a high reputation in statistical physics
and that he had “many good things in his line �statistical
mechanics, thermodynamics, etc.�.” However, his evalu-
ation of Onsager’s ideas was unenthusiastic. On the
equilibrium theory for point vortices he wrote that he
was “rather inclined to think that his arguments are as
yet not fully developed, if there is something to be found
behind his idea.” On the cascade theory for 3D and the
2/3 law for the velocity correlation, Lin wrote that “his
method for determining F�n� �the energy spectrum as a
function of wave number� for large values of n does not
seem to be convincing.” After this exchange with Lin,
there is no record that we could find that von Kármán
ever replied in any form to Onsager himself.

Lin wrote to Onsager, at least twice that we know. On
June 26, 1945, Lin �1945b� replied to Onsager’s long let-
ter to him earlier in the month. The letter expressed
polite interest in Onsager’s note but also stated that Lin
had “not yet had time to study it thoroughly.” The letter
pointed out to Onsager a number of developments, in-
cluding current work on functional integration by math-
ematician C. Loewner, the spectral version of the
Kármán-Howarth equation derived by Lin himself, and,
of special interest here, the following �Lin, 1945b�:

“I would like to study in detail the way in which
you arrived at definite results, for I never suc-
ceeded in getting any �on the spectrum�. I believe
the way by which the Russians handled Kármán-
Howarth equations is very ingenious. I reviewed a
very recent paper of theirs in this line for the
Mathematical Reviews. Enclosed is a carbon copy
for your reference. This is a review of Loitziansky’s
invariant integral �0

�f�r , t�r4dr and other discussions
of Kolmogoroff. The author has some new ideas,
which are very clever from a mathematical point of
view, but which perhaps do not correspond to
physical facts except when the ‘Reynolds number
of turbulence’ is low �the emphasis added by us�.”
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As far as we can determine, this is the first occasion on
which Onsager heard of Kolmogorov’s work in turbu-
lence. In fact, in the Lin note earlier that month, On-
sager had written with prescience:

“My tentative limiting formula for the correlation-
function in isotropic turbulence is not so obvious
that any one student could be expected to find it.
However, it seemed very probable to me that
somebody would have investigated the line of rea-
soning, which is not far fetched.”

That “somebody” was, of course, Kolmogorov, as On-
sager was to learn from Lin subsequently. It is not clear
whether Lin enclosed carbon copies of his review of
Kolmogorov’s work or of Kolmogorov’s papers; neither
is it clear when Onsager actually received and read Lin’s
mail, but it is worth noting that this was just four months
before the APS talk on which Onsager’s published ab-
stract �Onsager, 1945c� was based. Certainly by the time
of the meeting in Florence four years later, Onsager had
read Kolmogorov’s works and acknowledged the
priority.16 Thus Lin’s first letter to Onsager was quite
informative. The second—and, as far as we know, the
last—letter of Lin was on September 4, 1945 and was
much shorter. After thanking Onsager for some of his
reprints and reciprocating with reprints of his own, Lin
wrote �Lin, 1945c�:

“I am sorry to say that I have not made much
progress, except that I desire still more to see
something done in this line to bring your ideas
down to my level of understanding. And I certainly
wish that I could have the happy chance of talking
to you in person on this subject, and to learn some
statistical mechanics from you some day.”

That appears to be the end of their correspondence and
interaction.

The last exchange that Onsager had with the fluid me-
chanics experts on his turbulence theories, of which we
are aware, was an “account of his work” that he sent to
G. K. Batchelor sometime before the latter’s article in
Nature on December 14, 1946 �Batchelor, 1946�. This
paper pointed out the remarkable simultaneous discov-
ery of the 2/3 law for the velocity correlation by Kol-
mogorov, Onsager, Heisenberg, and von Weiszäcker.
Along with Batchelor �1947�, it was extremely influential
in bringing the landmark work of Kolmogorov and
Obukhov to the attention of the Western scientific com-
munity. From Batchelor’s description, the “account” that
Onsager had sent to him was close, if not identical, to
that sent earlier to Lin. Although Onsager was given
due credit in the 1946 article, it is noteworthy that
Batchelor, in comparing the different approaches of the
codiscoverers, wrote that “the neatest and most power-

ful formulation of the physical ideas is that of Kolmog-
oroff.” It is probably fair to say that to this day Kolmog-
orov’s work on turbulence is that most commonly
remembered by the fluid mechanics community, largely
overshadowing the distinctive contributions of Onsager
and the other codiscoverers �see Fig. 13�.

Onsager had also communicated his ideas to his fel-
low chemist, L. Pauling, in March of 1945. However, the
latter wrote back cordially but briefly on April 6, 1945
saying �Pauling, 1945�:

“Your work looks very interesting indeed to me,
but it is too far over my head for me to appreciate
it properly.”

As we have already noted, Onsager tried again four
years later at the IUPAP meeting on statistical mechan-
ics in Florence, Italy, where he presented his paper on
statistical hydrodynamics. However, the response was
quite muted. No one made any remark about the novel
concepts of negative absolute temperature for fluid vor-
tices or of inviscid dissipation by singular Euler solu-
tions. There is only one recorded question after Onsag-
er’s talk in Florence, by M. Born, who asked whether the
new theories could predict the critical Reynolds number
for transition to turbulence. Onsager replied. “No, the

16Perhaps this too played some role in Onsager’s leaving the
field. Few things in science can be more discouraging than to
make a big advance and then to find that you were scooped by
someone a short time earlier!

FIG. 13. The great Soviet mathematician Andrei Nikolaevich
Kolmogorov �1903–1987�. His works on fluid turbulence in the
early 1940s and early 1960s, carried forward by several of his
able disciples, among whom was Aleksandr Mikhaylovich
Obukhov �1918–1989�, have influenced the field enormously.
Kolmogorov and Onsager were exact contemporaries, born in
the same year, but there is no evidence that the two giants ever
corresponded. Kolmogorov’s work on turbulence was un-
known to Onsager until sometime after June of 1945. Re-
printed with permission of Albert W. Shiryaev.
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problem of the Reynold’s number is more complicated.
Consult recent work of C.-C. Lin.” It is certainly not the
case that Onsager was ill regarded by this audience, for
his breakthroughs in nonequilibrium thermodynamics,
the 2D Ising model, and superfluid helium were major
subjects of the meeting and had created an enormous
stir.17 However, one surmises that Onsager’s advanced
ideas on turbulence were generally met there with polite
incomprehension. We have already mentioned some of
the reaction after the conference. von Neumann dis-
cussed Onsager’s theory of vortex equilibria in his un-
published review article on turbulence for the Air Force
Office of Scientific Research �von Neumann, 1949�. In
the following decade a number of famous physicists
worked for a while on turbulence, for example, W.
Heisenberg, T. D. Lee, R. P. Feynman, and S. Chan-

drasekhar. It is remarkable that none of these scientists
either followed up on Onsager’s hints or rediscovered
the insights for themselves. Lee �1951, 1952� extended
some of Onsager’s equilibrium statistical-mechanics
ideas to continuum Euler equations, but soon left the
field for particle physics. Feynman is famously reported
to have worked hard on turbulence in the 1950s but to
have gotten nowhere and finally given up. With so little
reaction and progress from others, it is perhaps not so
surprising that Onsager moved off into other areas.

The situation in the subject really changed, so far as
we can determine, with the entry of R. H. Kraichnan
into the field through his publication of the direct-
interaction approximation closure �Kraichnan, 1959� and
his theory of the 2D dual cascades of inverse energy and
direct enstrophy �Kraichnan, 1967�. These publications
opened up lines of work on analytical turbulence closure
and 2D statistical hydrodynamics that were soon fol-
lowed by others, such as Edwards �1964� and Frisch
�1968� for closure and Joyce and Montgomery for 2D
hydrodynamics �Joyce and Montgomery, 1973; Mont-
gomery and Joyce, 1974�. Kolmogorov’s work on inter-
mittency and anomalous scaling �Kolmogorov, 1962� also
broke open new directions that saw a large influx of
people and significant progress. Onsager’s few cryptic
hints in Onsager �1949d� on equilibrium statistics of vor-
tices and on Euler singularities and dissipative anoma-
lies, in the end, triggered significant work on those di-
rections. Because Onsager never published his ideas on
intermittency and spectral closure, he did not have any
influence in those areas. However, it now seems that all
of Onsager’s key insights in turbulence—both published
and unpublished—have been fully recovered and even
advanced upon. It has taken the community only half a
century to catch up!

B. The future of Onsager’s ideas

Clearly, the two most original ideas that Onsager sup-
plied to the field of turbulence are his theory of large-
scale vortices in 2D flows and his theory of inviscid dis-
sipation in three dimensions. What, if any, are their
lasting significance for future development? This is a
subjective question but worth an attempt at answering
nevertheless.

As Onsager himself observed, the spontaneous ap-
pearance of large-scale and long-lived vortices is a fre-
quent but striking occurrence in two-dimensional flow—
particularly in planetary atmospheres. The mathematical
foundations of Onsager’s equilibrium theory are now
largely explored and understood and also those of its
generalization by Miller and Robert. A notable excep-
tion is the ergodicity or mixing properties of fluid dy-
namics sufficient for its validity over experimentally ac-
cessible times. The issue of time scales is understood
only a little better than it was in Onsager’s day. As far as
the empirical confirmation of the equilibrium vortex
theories is concerned, it must be admitted that while
reasonable agreement has been obtained with a few nu-
merical simulations and laboratory experiments, we

17Even these results of Onsager’s, while better appreciated,
took considerable time for the physics community to digest
properly. Miller �1995� and Mazur �1996� in their historical ar-
ticles on Onsager’s irreversible thermodynamics both note that
his fundamental papers �Onsager, 1931a, 1931b� received little
or skeptical attention in the first decade after their publication.
It was only about the time of the Florence meeting in 1949 that
his ideas were becoming generally accepted, following the
work of Meixner �1943�, DeGroot �1945�, and Prigogine �1947�.

It is also true that Onsager’s exact solution of the 2D Ising
model in 1944, while creating an immediate sensation world-
wide, was not fully appreciated until much later. In an engag-
ing discussion of the history of statistical physics, C. N. Yang
writes:

“Young physicists today may find it surprising, even un-
believable, that in the 1950s the Ising model and similar
problems were not deemed important by most physicists.
They were considered arcane exercises, narrowly inter-
esting, mathematically seducing, but of little real conse-
quence. There was the phrase �Ref. 8�, for example, of
‘contracting the Ising disease.’ ” �Yang, 1996�.

It was only in the 1960s that this situation changed, in part
because of the experimental discovery of a logarithmic diver-
gence in the specific heat of 4He at the $ point �Fairbank et al.,
1958�.

Likewise, Onsager’s prediction at the Florence meeting of
quantization of circulation in superfluids was not met with im-
mediate understanding or acceptance. One of the conference
participants, G. Careri, who later performed key experiments
on visualizing the quantized vortex lines, writes that

“However, on that occasion, he �Onsager� offered only a
brief account of his ideas, and he was probably not un-
derstood by the distinguished audience, as emerges from
the recorded questions and answers. Indeed, he spoke
then as always like an oracle” �Careri, 2000�.

Onsager’s prediction of quantized circulation in superfluids—
and, similarly, London’s prediction of flux quantization in su-
perconductors �London, 1948�—were not widely accepted until
after the independent work of Feynman �1955�. Thus the re-
ception given to Onsager’s work on turbulence seems to rep-
resent simply a more extreme example of a general tendency.
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know of no really convincing verifications for flows in
nature. In fact, comparison of the theory with natural
flows may require extensions and corrections of various
sorts: for finite Reynolds numbers, for three-
dimensional effects, for driving forces from boundaries,
and so forth. Only a few of these have been pursued
seriously so far. Furthermore, most of them will carry
the problem outside the domain of Gibbsian equilibrium
theory proper and into the regime of nonequilibrium.
Quite different methods may then be required.

The observed viscosity independence of turbulent en-
ergy dissipation is, first and foremost, a surprising physi-
cal phenomenon. It is as astonishing, in its own way, as
quantum effects such as superfluid flow without appar-
ent viscosity. In a certain sense, turbulent flows seem to
be the opposite, i.e., “superdissipators,” for which dissi-
pation does not disappear even as viscosity approaches
vanishingly small values. This is also the property of tur-
bulence, which gives the phenomenon much of its prac-
tical importance. The scaling law �27� with constant A is
equivalent to a drag force 1

2CD�V2S with constant CD
for a fluid of density � and velocity V moving past a
body with cross-sectional area S �Batchelor, 1953�. The
energy required to overcome such turbulence-enhanced
drag in transport vehicles and in material transport by
pipelines is enormously costly. The phenomenological
law �27� is, furthermore, a bedrock assumption of all
present-day theories of turbulence. Onsager’s theorem is
important because it gives a foundation to this basic ex-
perimental observation and provides insight into the dy-
namical mechanism producing it.

A fundamental physical issue still poorly understood
is the relation of the Kolmogorov-Onsager cascade pic-
ture of turbulent dissipation with G. I. Taylor’s Lagrang-
ian picture based on chaotic stretching of vortex lines.
However, some recent important progress has been
made in a solvable turbulence model, the so-called
Kraichnan model of a passive scalar advected by a
Gaussian random velocity field that is white noise in
time. For an excellent survey, see Falkovich et al. �2001�.
Here it has been shown that the singularity of the turbu-
lent velocity field, first pointed out by Onsager, leads to
the breakdown of uniqueness of Lagrangian particle
paths. In this way the 1/3 Hölder exponent of the veloc-
ity increments in space can be connected with the fa-
mous Richardson law predicting the t3 growth in time of
the square separation between two Lagrangian particles.
Furthermore, the nonuniqueness of the Lagrangian
trajectories has been shown to be responsible for the

dissipative anomaly of the passive scalar intensity in the
Kraichnan model. See Falkovich et al. �2001� for details.
It remains a major challenge to carry over such insights
from this simple toy model to the Lagrangian equations
of motion of three-dimensional Euler equations.

We believe that Onsager’s theoretical vision of an
“ideal turbulence” described by inviscid fluid equations
is a proper idealization for understanding high Reynolds
number flows. Needless to say, in real physical turbu-
lence there is viscosity, which is always positive. How-
ever, we regard the zero-viscosity limit for turbulence as
quite analogous to the thermodynamic limit for equilib-
rium statistical mechanics. In any real physical system,
the volume is finite not infinite. However, the thermody-
namic limit is a useful idealization for equilibrium sys-
tems whose dimensions are large compared to the size of
the constituent molecules. In the same way, the zero-
viscosity limit, which supposes an infinite number of cas-
cade steps, should be a good idealization for turbulence
with a large but finite number of cascade steps, that is, a
Reynolds number which is large but finite. The vindica-
tion of this belief, if it is true, must come from a set of
calculational tools for the zero-viscosity limit, which will
make it, in the end, a truly predictive device.
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