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Abstract

The study of WWW-traffic measurements has shown that different traffic characteristics can be modeled by long-tail
distributed random variables (r.v.s). In this paper we discuss the nonparametric estimation of the probability density function
of long-tailed distributions. Two nonparametric estimates, a Parzen–Rosenblatt kernel estimate and a histogram with variable
bin width called polygram, are considered. The consistency of these estimates for heavy-tailed densities is discussed. To
provide the consistency of the estimates in the metric spaceL1, the transformation of the initial r.v. to a new r.v. distributed
on the interval [0,1] is proposed. Then the proposed estimates are applied to analyze real data of WWW-sessions. The latter
are characterized by the sizes of the responses and inter-response intervals as well as the sizes and durations of sub-sessions.
By these means the effectiveness of the nonparametric procedures in comparison to parametric models of the WWW-traffic
characteristics is demonstrated. © 2000 Published by Elsevier Science B.V.
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1. Introduction

Considering the rapid growth of the Internet and the effective design of the underlying IP-based transport
network, efficient data gathering and evaluation as well as a careful statistical analysis of the corresponding
random processes and random variables (r.v.s) describing the World Wide Web (WWW) traffic charac-
teristics are required. The analysis of existing measurements of WWW-traffic by statistical methods has
shown that the characteristics can often be modeled by long-tailed distributions or follow mixtures of
long-tailed distributions due to the heterogeneous sources of the information transfer (see [2,6,14,20] and
references therein).

In the last few years, estimation methods for long-tailed probability density functions (p.d.f.s) have
been developed (cf. [8]). The basic question is how to restore a long-tailed p.d.f. by empirical data of
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a limited number. First of all, standard nonparametric estimates, such as a histogram, a projection or a
Parzen–Rosenblatt (P–R) kernel estimate, cannot describe the behavior of the p.d.f. on the tail due to the
lack of information outside the closed interval determined by the range of an empirical sample. They
operate just with the empirical samples of limited size which are not representative regarding the tail.
However, for many applications it is important to know the probability of rare events. Hence, a parametric
approach has been developed to describe the tails. Among these parametric tail estimates Hill’s estimate
and the kernel tail-estimates are popular (cf. [7,11]). Typically, there are not enough data to test the
parametric form of the tail with sufficient confidence. Besides, parametric tail models do not reflect the
behavior of the p.d.f. for relative small values of a r.v. The experiences of the restoration with parametric
models have shown that some models describe the tails quite good and other models are better for the
small-values area of the p.d.f. (cf. [14,20]).

Considering the mentioned difficulties, it is the aim of this paper to propose a reliable nonparametric
estimate for a long-tailed p.d.f. arising from WWW-traffic characterization. To apply a nonparametric
approach, we need only general information describing the p.d.f. We may know, e.g. that the p.d.f. is
long-tailed, continuous or bounded, etc.

For a long time the nonparametric estimation of a long-tailed p.d.f. was based on the assumption that
the p.d.f. has a compact support since all points of a fixed empirical sample are concentrated on a compact
support, e.g. on some closed interval. Regarding, for instance, a Gaussian p.d.f. we may be convinced that
95% of the points are located within the intervalµ± 3σ . Then different methods for the restoration of a
p.d.f. with compact support, such as projection and histogram estimates, have been applied to long-tailed
p.d.f.s. However, in this case there is a source of an estimation error arising from the ignored tails. In
contrast to that approach, a Parzen–Rosenblatt (P–R) estimate
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whereK(t) is a kernel function andh is a smoothing parameter (“a window width”), does not demand
the assumption of a compact support. It is defined on the whole real axisR and may, therefore, be
applied to a long-tailed p.d.f. In the following,C denotes the space of real-valued continuous functions.
Considering the P–R estimate and its basic features, the asymptotic consistency and the limit lower
bounds for the estimation of the risk in the metric spacesL2 andC were proved in [9,10] for a smooth
p.d.f. satisfying Hoelder’s condition provided thath → 0, lh → ∞ for l → ∞. This means that
sufficiently accurate asymptotic estimates may be achieved even for a long-tailed p.d.f. The mathematical
term consistency (or convergence) means that the error of the estimation which is determined by the
metric ofL1, L2 or C tends to zero in probability or almost surely (a.s.) if the sample sizel goes to
infinity.

If the sample size is limited, one selects the smoothing parameterh depending on the observations
to get accurate estimates. One of these selection techniques is provided by the cross-validation method
(c.v.m.) (cf. [5]).

It is the basic statistical problem of a long-tailed p.d.f. that the spacing between the extreme order
statistics does not converge to zero. This feature is illustrated by any p.d.f. satisfying the condition
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for any x, particularly those p.d.f.s whose tails decrease ascx−α, α > 1. Cauchy, Pareto and Student
distributions exhibit such a behavior. This leads to theL1-nonconsistency of the P–R estimates (cf. [15])
and, therefore, theL2- andC-nonconsistency for some long-tailed p.d.f.s ifh is selected by the c.v.m.

In [8] the practical and theoretical importance of theL1-consistency of the estimates is demonstrated.
It seems that the convergence of the estimates in theL1 metric is “weaker” than in theL2 andC metric.
Particularly,C-consistent estimates provide uniform reliability on the whole domain of definition. Nev-
ertheless, according to Scheffe’s theorem (cf. [3,8]) one half of theL1 distance between two p.d.f.sf and
g is equal to the total variation between two probabilities of any Borel setA, 1

2

∫ |f (x)− g(x)|λ(dx) =
supA|∫

A
f (x)λ(dx) − ∫

A
g(x)λ(dx)|, where the supremum is taken over all measurable setsA andλ is

a σ -finite measure, e.g. the Lebesgue measure onR
1. Since in practice we are more often interested

to estimate some probability functions, e.g. a distribution function (d.f.)F(x) = ∫ x
−∞f (t)dt or a tail

1− F(x) than a p.d.f.f (x), theL1-consistency cannot be ignored. In [5] theL1-consistency of the P–R
and histogram estimates has been proved for p.d.f.s with compact support. It was assumed that the kernel
function of (1) is bounded and has a compact support, i.e.K(x) 6= 0 for x ∈ [a, b], K(x) = 0 for
x /∈ [a, b], where [a, b] is a closed interval, andh or the bin width of a histogram have been selected by
the c.v.m. Generally, theL1-consistency is not only satisfied for a p.d.f. with compact support. It seems
that the borderline between theL1-consistency and nonconsistency of the P–R estimate corresponds to
the exponential distribution (thenh → 0 in probability) (cf. [8]). This means that for a p.d.f. with lighter
tails than exponential, e.g. a Gaussian p.d.f. or any p.d.f. with compact support, there areL1-consistent
P–R estimates. For a p.d.f. with heavier tails than an exponential p.d.f., a so-called heavy-tailed p.d.f.,
theL1-consistency of the P–R estimates is not guaranteed.

To provide theL1-consistency of the estimate, we use in this paper a transformation functionT :
[0,∞) → [0,1] reflecting the positive half of the real axis to the interval [0,1]. This transformation
may also be extended toT : R → [0,1]. This idea was first proposed in [5] and later investigated
without implementation in [8]. Exploiting this concept, we propose a specific transformation function in
our paper. This functionT transforms any long-tailed r.v. with positive values to a new one whose p.d.f.
has a compact support, namely the interval [0,1]. Then the estimation of the p.d.f. of this new r.v. is
provided by a P–R estimate with compact and noncompact kernels and by a polygram, i.e. a histogram
with variable bin width based on statistically equi-probable cells (cf. [17]). The inverse transformation
stretches the estimators on the tail. The visual effect is in a way similar to using a variable smoothing
parameter: this parameter is larger on the tail and smaller near the mode. Then, due to the invariance of
theL1 metric regarding any monotone continuous transformation, theL1-accuracy of the p.d.f. of the
initial r.v. is the same as theL1-accuracy of that p.d.f. with compact support arising from the transformed
r.v. Generally, a polygram works like an adaptive P–R estimate (cf. [15]). In our paper we investigate the
accuracy of a P–R estimate and a polygram for a long-tailed p.d.f. if the new transformation function and
different smoothing methods are applied.

The paper is organized as follows. In Section 2, we present the nonparametric estimates and the
transformation of a long-tail distributed r.v. to a new r.v. whose p.d.f. has a compact support. The choice
of the smoothing parameters, i.e.h for the P–R estimate and the number of points in the equi-probable
cells for the polygram, by the discrepancy method is proposed. We also discuss the accuracy of these
estimates. Section 3 contains the results of a simulation study of the P–R estimates and the polygram
combined with the discrepancy and cross-validation methods as smoothing procedures. In Section 4, we
estimate the p.d.f.s arising from real data of WWW-traffic characteristics measured at the University of
Würzburg. We conclude with a summary of our findings.



208 N.M. Markovitch, U.R. Krieger / Performance Evaluation 42 (2000) 205–222

2. Mathematical framework of the estimation approach

We observe a sampleXl = (x1, . . . , xl) of independent observations of a r.v., e.g. the size of WWW
responses, wherel denotes the sample size. They are assumed to be distributed with the p.d.f.f (x) and
the d.f.F(x). For the purpose of the data analysis we use the P–R estimate with a Gaussian kernel

f 1
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the P–R estimate with Epanechnikov’s kernel, which has a compact support,
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where

Θ(t) =
{

1, t ≥ 0,
0, t < 0,

and a polygram, i.e. a histogram with variable bin width

fk,l(t) = k

(l + 1)λ(∆rk)
(5)

for t ∈ ∆rk (cf. [17]). Here, we assume thatλ is Lebesgue’s measure,λ(∆rk) → 0 andk = o(l), that
x(1), . . . , x(l) is the order statistics corresponding to the sampleXl and that the number of points inside
each interval∆1k = [x(1), x(k)],∆2k = (x(k), x(2k)],∆3k = (x(2k), x(3k)], . . . is less than or equal tok. The
estimate (5) can be rewritten in the form
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where [r] denotes the integer part ofr ∈ R and
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Let us first consider the P–R estimate and its properties. Forl → ∞ the convergence of the P–R
estimate to the p.d.f.f (x) depends on the choice ofh. It was shown by Parzen that for a uniformly
continuousf a P–R estimate converges in the metric spaceC in probability if

h → 0, lh2 → ∞, l → ∞, (7)

whereas for the convergence with probability one it is sufficient that for any positiveµ the series
∞∑
l=1

exp(−µh2l) < ∞ (8)

converges (Nadaraya’s result — cf. [18]).
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The P–R estimate converges in theL1 metric almost surely if

h+ (lh)−1 → 0, l → ∞ (9)

holds (cf. [8]). Since a P–R estimate is defined on(−∞,∞), it can be applied to restore a long-tailed
p.d.f. However, it is the main disadvantage of a P–R estimate thath is constant and cannot be adapted
locally. Therefore, the behavior of a P–R estimate became poor for a nonsmooth and heavy-tailed
p.d.f. In [8] it was proved that for the P–R estimate with a bounded and compact kernel function
l2/5E

∫ |fh,l(x) − f (x)| dx → ∞ holds for l → ∞ for any value ofh if
∫ √

f or (and)
∫ |f ′′| is

unlimited.
Let us now consider the polygram estimatefk,l in (5) and its features. ItsL1-convergence was shown

by the following Theorem (cf. [1]).

Theorem 1. For a polygramfk,l the following three assertions are equivalent:
1.
∫∞
−∞|fk,l(x)− f (x)| dx → 0 in probability for any Riemann integrable p.d.f. f ;

2.
∫∞
−∞|fk,l(x)− f (x)| dx → 0 a.s. for any Riemann integrable p.d.f. f ;

3. k → ∞,
k

l
→ 0 as l → ∞. (10)

Many authors have pointed out that histograms with equi-probable cells generally achieve better results
than those with equal-sized cells (cf. [8,17]). The asymptotic convergence rate of (5) in theL1 metric
reachesl−2/5 for somef , the same as for a P–R estimate. A histogram with equal-sized cells cannot
achieve a convergence rate better thanl−1/3 in L1. Since histogram-type estimates are defined on closed
intervals, they cannot be applied directly to the estimation of a long-tailed p.d.f.

For a long-tailed p.d.f. the accuracy of a P–R estimate may be improved by the transformation of
the initial r.v. to a new one whose p.d.f. has a compact support. We first estimate the p.d.f. of the
transformed r.v. and apply then the inverse transformation. Such an estimation procedure is derived
from the following theoretical results. LetT : [0,∞) → [0,1] be a monotone increasing continuous
“one-to-one” transformation. The inverse transformationT −1 and the derivativesT ′, (T −1)′ are assumed
to be continuous. Then the transformed sequence ofXl is given byY l = (y1, . . . , yl), whereyi = T (xi)

holds. Letg(x) be the p.d.f. andG(x) be the d.f. of the r.v.y1. g(x) = f (T −1(x))(T −1(x))′ is a p.d.f.
located on [0,1] since(T −1(x))′ exists and is continuous for anyx.

If gl(x) is some estimate of this p.d.f. constructed byY l, then the estimate of the unknown p.d.f.f (x)
is given by

fl(x) = gl(T (x))T
′(x). (11)

The remarkable effect is that the estimation error in the metric spaceL1 is invariant for any continuous
transformation (cf. [8, p. 244]):

∫ ∞

0
|fl(x)− f (x)| dx =

∫ 1

0
|gl(x)− g(x)| dx.

An optimal transformation providing mingE
∫ 1

0 |gl(x) − g(x)| dx in the case of the P–R estimate is
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determined by

T (x) =


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F(x)

2

)1/2

, F (x) ≤ 0.5,

1 −
(

1 − F(x)

2

)1/2

, F (x) > 0.5,

and in the case of the histogram estimate byT (x) = F(x) (cf. [8]). Since the d.f.F(x) is unknown, one can
construct just the estimateTl(x) of T (x). An application of the empirical d.f.Fl(x) is not recommended
since the derivative ofFl(x) does not exist everywhere and it is zero on the intervals of constancy. The
difference betweenTl(x) andT (x) does not influence the asymptoticL1-accuracy. But the accuracy of
the estimation may be sensitive toTl(x) if the sample size is limited. Using some parametric estimate of
F(x) causes all the difficulties of parametric tail modeling. For these reasons, we choose asT (x) a fixed
transformation

T (x) = 2

π
arctanx, T ′(x) = 2

π(1 + x2)
, (12)

which does not depend on the empirical sampleXl and satisfies forx ∈ [0,1) all previously mentioned
conditions about the transformation. Such a transformationT (x) generates a boundedg(x) for some
heavy-tailedf (x) (see Fig. 1).

Usually,gl(x) is not a p.d.f. on [0,1] since a part of the distribution is located outside [0,1]. Taking
this issue into account, we use the estimate

g̃l(x) = gl(x)∫ 1
0 gl(x)dx

instead ofgl(x). Then

f̃l(x) = g̃l(T (x))T
′(x) (13)

holds, and∫ ∞

0
|f̃l(x)− f (x)| dx =

∫ 1

0
|g̃l(x)− g(x)| dx ≤

∫ 1

0
|gl(x)− g(x)| dx

follows, i.e. theL1 risk of g̃l is better than that ofgl (cf. [8, p. 245]).

Fig. 1. Densities of a transformed r.v. generated by the transformation (12).
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To overcome the boundary effects, which occur if the P–R estimate is fitted to a p.d.f. with compact
support, the “mirror image” tool may be used (cf. [16]). In conclusion, the proposed algorithm to estimate
a long-tailed p.d.f. looks as follows:
1. The nonparametric estimategl which is located on [0,1] is constructed by the transformed sampleY l

and normalized if it is necessary.
2. An estimate of the smoothing parameter of this estimategl is calculated.
3. To obtain the estimate of the p.d.f.f (x), an inverse transformation is applied (see (11) and (13)).

For the transformation (12) the P–R estimates (3) and (4) of the transformed r.v.y1 are determined by

g1
h,l(x) = 1

lh
√

2π

l∑
i=1

exp

(
−1

2

(
x − yi

h

)2
)
, (14)

g2
h,l(x) = 3

4lh

l∑
i=1

(
1 −

(
x − yi

h

)2
)
Θ(h+ yi − x), (15)

respectively, whereyi = (2/π)arctan(xi). By (13) we obtain after the normalization
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Letgk,l(x) be a polygram constructed onY l by the formula (6). We get after the inverse transformation
(11) (since a normalization is not necessary):

fk,l(x) = 2

π(1 + x2)
gk,l

(
2

π
arctan(x)

)
. (18)
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Let us now discuss the selection of the parametersh andk determining the accuracy of the P–R estimate
and a polygram.

The conditions (7)–(9) and Theorem 1 recommend the a priori choice (before the calculations begin)
of h andk as functions of the sample sizel. The practice shows, however, that it is better to select the
smoothing parameter depending on fixed sample points if the sample size is limited. According to the
c.v.m.hork are chosen in cross-validated density estimation as maximum of the likelihood-like expression

Ll =
l∏
i=1

gil−1(yi), (19)

wheregil−1 is the P–R estimate or a polygram based on the random sampleY l excluding theith observation
(cf. [5]).

Here, we selecth andk by an alternative based on the discrepancy principle, the so-calledω2- and
D-methods (cf. [12,13]). It is the essence of this principle to obtainh (or k) in the case of theω2-method
from the equality

lω̂2
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Gh(y(i))− i − 0.5

l

)2

+ 1

12l
= 0.05, (20)

or, in the case of theD-method, from the equality
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−
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andy(1) ≤ y(2) ≤ · · · ≤ y(l) is the order statistics of the transformed observations. For the normalized
P–R estimate (14)
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holds, for the normalized P–R estimate (15) we get
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Let [x] denote now the smallest integer larger thanx. For a polygram we have
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− 1
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(l + 1)

]
, (22)
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provides the solution of (21). It satisfies (10) and guarantees theL1-convergence for a Riemann integrable
p.d.f. The advantage is that the statisticslω̂2

l andD̂l are based on the observed (ungrouped) sample points.
In [12] theω2- andD-methods have been investigated empirically by computer simulation for small
samples and different distributions. Considering theL2-distance as loss function, they have provided
better results for P–R estimates and for nonsmooth distributions, e.g. triangle and uniform distributions,
than the c.v.m. and the same results for smooth distributions. It was proved in [19] that ifh is selected by
theω2-method then theL2-risk of the estimation is the best for the p.d.f. with a bounded variation of the
kth derivative.

3. A simulation study of the estimates

Performing an experimental study presented in this section, we have compared the P–R estimates with
the compact and noncompact kernel functions (16) and (17) and a polygram (18) for different long-tailed
p.d.f.s. Regarding the selection of the smoothing parameters theω2- andD-methods have been compared
with the c.v.m.

For the comparison we have generated samples of the known p.d.f.s

f1(x) =



xs−1 exp(−x)

Γ (s)
, x > 0,

0, x ≤ 0

of a Gamma distribution with the parameters = 2,
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1√
2πσx
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2σ 2
(ln x − µ)2

)
, x > 0,

0, x < 0

of a Lognormal distribution withµ = 1, σ = 1 and

f3(x) =
{

sxs−1exp(−xs), x > 0,

0, x < 0

of a Weibull distribution withs = 0.5. The Gamma distribution is related to the light-tailed distributions,
but the Lognormal and Weibull p.d.f. are heavy-tailed.

As characteristics of the estimates, we used the loss functions

χ1 =
∫ ∞

0
|fl(x)− f0(x)| dx =

∫ 1

0
|gl(x)− g0(x)| dx,

χ2 =
∫ ∞

0
(fl(x)− f0(x))

2 dx = 2

π

∫ 1

0

(gl(x)− g0(x))
2

1 + [ tan((π/2) x)]2
dx,

χ3 = sup
i=1,...,l

|fl(xi)− f0(xi)|,

wherefl(x), gl(x) are the estimates of the p.d.f. andf0(x), g0(x) are the exact models of the p.d.f. arising
from the initial and the transformed r.v. The normalized P–R estimates (14) and (15) and the polygram
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Table 1
Comparison of the estimation methods for a Gamma distribution

Method Size ρ̄1 σ 2
1 × 103 ρ̄2 σ 2

2 × 103 ρ̄3 σ 2
3 × 103 h̄/k̄(σ 2

h × 104)

(16) ω2 50 0.204 5.013 0.014 0.113 0.139 3.601 0.066 (3.793)
100 0.158 2.016 0.008 0.035 0.114 2.309 0.064 (3.003)

(17) ω2 50 1.411 3.819 1.326 6.796 1.649 176 0.059 (4.365)
100 1.413 3.633 1.331 4.916 1.851 150 0.067 (2.866)

c.v.m. 50 1.4 3.814 1.303 6.558 1.634 169 0.03 (6.681)
100 1.398 3.454 1.298 3.99 1.826 147 0.033 (4.137)

(18) D 50 0.587 65 0.121 1.814 1.077 678 5
100 0.508 28 0.099 1.512 0.61 101 7

(6) are used asgl(x). We have considered samples of the sizel = 50, 100 and 300. For each size we have
constructed 25 realizations. Then, we calculated the statistics

ρ̄j = 1

n

n∑
i=1

χ
j

i , σ 2
j = 1

n− 1

n∑
i=1

(χ
j

i − ρ̄j )
2, n = 25, j = 1,2,3.

Based on the latter, we have compared the accuracy of the p.d.f. estimates and of the methods for
selecting their smoothing parameters. We also calculated the meansh̄, k̄ and the standard deviationσ 2

h of
the parametersh andk on the basis of these 25 realizations. The values of the statisticlω̂2

l were chosen
with an error of 2%.

Considering the results of the simulation study shown in Tables 1–3, the following observations can be
made:
1. If the sample size increases, the polygram converges tof1, f2 in the metricsL1, L2 andC and tof3

just in the metricsL1 andL2.
2. The P–R estimate (16) provides the convergence tof1 andf2 in L1, L2 andC and does not converge

to f3 in any metric.
3. The P–R estimate (17) converges tof1 (for c.v.m.),f2 andf3 in the metricsL1 andL2 and does not

converge in the metricC for both methods of smoothing.
4. The P–R estimate (16) is more accurate than a polygram and (17) forf1 andf2 and it is worse forf3.
5. The P–R estimate (17) shows worse results than a polygram and the P–R estimate (16) forf1 andf2.
6. Theω2-method provides the same results as a c.v.m.

Table 2
Comparison of the estimation methods for a Lognormal distribution

Method Size ρ̄1 σ 2
1 × 103 ρ̄2 σ 2

2 × 103 ρ̄3 σ 2
3 × 103 h̄/k̄(σ 2

h × 104)

(16) ω2 50 0.337 7.956 0.022 0.1783 0.173 8.635 0.032 (0.9293)
100 0.237 6.483 0.011 0.0888 0.15 15 0.033 (1)

(17) ω2 50 1.493 3.9 1.154 3.452 1.102 133 0.035 (0.9856)
100 1.493 3.796 1.154 2.736 1.326 120 0.037 (0.7879)

c.v.m. 50 1.494 3.951 1.156 3.557 1.103 134 0.031 (6.256)
100 1.491 3.799 1.151 2.781 1.324 119 0.029 (1.564)

(18) D 50 0.579 110 0.072 0.3685 0.621 484 5
100 0.492 34 0.061 0.2429 0.298 34 7
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Table 3
Comparison of the estimation methods for a Weibull distribution

Method Size ρ̄1 σ 2
1 × 103 ρ̄2 σ 2

2 × 103 ρ̄3 σ 2
3 × 103 h̄/k̄(σ 2

h × 104)

(16) ω2 50 0.498 31 0.551 442 199.1 1.639× 108 0.023 (1.448)
100 0.579 41 0.966 544 319.1 9.506× 108 0.011 (1.066)

(17) ω2 50 0.722 1.052 0.607 3.172 199.32 1.64× 108 0.023 (1.422)
100 0.72 0.9683 0.599 1.691 320.49 9.5 × 108 0.01 (0.409)
300 0.718 0.8819 0.592 0.8622 474.88 1.015× 109 0.003 (0.0266)

c.v.m. 50 0.986 527 1.406 6557 198.8 1.64× 108 0.181 (430)
100 0.738 8.925 0.627 46 320.49 9.5 × 108 0.075 (180)

(18) D 50 0.354 13 0.385 598 185.56 1.627× 108 5
100 0.337 11 0.307 533 306.16 9.365× 108 7
300 0.262 8.928 0.16 22 433.07 1.003× 1010 10

It follows from the simulation study that a polygram and the P–R estimate (16) are preferable for the
application to real data if the true p.d.f. is not available. If one knows that the p.d.f. is heavy-tailed, then
a polygram is recommended.

4. Data analysis of WWW-traffic characteristics

To illustrate the proposed nonparametric estimation approach, we have analyzed real data of WWW-traffic
measured in the Ethernet segment of the Department of Computer Science at the University of Würzburg
in 1997. For further details of the data gathering the readers are referred to [20].

4.1. Description of the WWW-traffic data

The data are described by a hierarchical model distinguishing a session and a page level. The first one
is characterized by sub-sessions in [20]. Consequently, the data are described by two basic characteristics
and four related r.v.s, namely, the characteristics of sub-sessions, i.e. the size of a sub-session (s.s.s.) in
bytes and the duration of a sub-session (d.s.s.) in seconds, as well as the characteristics of the transferred
WWW-pages, i.e. the size of the response (s.r.) in bytes and the inter-response time (i.r.t.) in seconds
were measured (see Table 4). The sub-session has an average size of 1.283× 106 byte and the average
duration of 1.728× 103 s, the variance of the s.s.s. is 1.664× 1013 byte and the variance of the d.s.s. is
2.71× 107 s, minimal and maximal s.s.s. are 128 byte and 5.884× 107 byte, minimal and maximal d.s.s.
are 2 and 9.058× 104 s. The sample sizel is 373 for both samples. For simplicity of the calculations, the
data were scaled, namely, the s.s.s. was divided by 107 and the d.s.s. by 103.

Table 4
Modeling of WWW-sessions

Level Characteristic Definition

Sub-session Duration Time between beginning and termination of browsing a series of Web pages
Size Data volume of visited Web pages

Page Inter-response time Time between beginning of the old and of the new transfer of pages within a sub-session
Size of response Total amount of transferred data (HTML, images, sound, etc.)
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The data of the WWW-page sizes contain the information about 7480 WWW-pages which have been
down-loaded during 14 days by several TCP/IP connections. The size of a response is defined as the sum
of the sizes of all packets which are down-loaded from a WWW-server to the client upon a request. To
perform the analysis, we have used samples with the reduced sample sizel = 1000 for the sizes and
inter-response times of WWW requests, which have been observed in a shorter period within these two
weeks.

The mean s.r. is 3.467× 104 byte and the variance 2.853× 1010 byte, the minimal and maximal s.r. are
1× 10−3 byte and 4.351× 106 byte. The mean and the variance of the i.r.t. are 73.282 and 4.184× 104 s,
the minimal and maximal i.r.t. are 0.03 and 3.277× 103 s. For scaling the s.r. was divided by 106 and the
i.r.t. by 103.

4.2. Results of the statistical data analysis

The statistical analysis of the underlying four r.v.s of the WWW-traffic characteristics is similar. First,
we have checked whether an exponential d.f.Fexp(t, λ) = 1 − exp(−λt) for t > 0 or a Pareto d.f.
Fp(t, α) = 1 − tα0 t

−α for α > 0, t ≥ t0 = 10−3 (for each sample) is an appropriate model for the d.f.
of the corresponding r.v. Then we have estimated the p.d.f. of each r.v. by a P–R estimate (16) and a
polygram (18) using the smoothing methods (20) and (21).

Maximum likelihood estimates were calculated by the formulas

λ =
(

1

l

l∑
i=1

xi

)−1

, α =
(

1

l

l∑
i=1

ln(xi)− ln(t0)

)−1

for the exponential and the Pareto d.f., respectively, wherex1, . . . , xl denotes the s.s.s., d.s.s., s.r. or i.r.t.
sample. For the s.s.s. sample we obtainedλ = 7.795,α = 0.305, for the d.s.s.λ = 0.579,α = 0.161,
for the s.r.λ = 28.846,α = 0.483, and for the i.r.t.λ = 13.646,α = 0.344.

LetFl(t) = (1/l)
∑l

i=1Θ(t−xi) denote the empirical d.f. In Figs. 2–5 the survival functions 1−Fl(t),
1 − Fexp(t, λ) and 1− Fp(t, α) are shown for the s.s.s., d.s.s., s.r. and i.r.t. samples. The application of
the Kolmogorov–Smirnov (K–S) test shows that no sample follows an exponential or Pareto distribution

Fig. 2. Size of the sub-session sample: estimation of the survival functions.
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Fig. 3. Duration of the sub-session sample: estimation of the survival functions.

Fig. 4. Size of the response sample: estimation of the survival functions.

Fig. 5. Inter-response time sample: estimation of the survival functions.
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despite of the visual similarity of these models. Since the samples contain more than 100 points, the
quantiles of the K–S statistic have been estimated by the formula (cf. [4])

D̃l(Q) =
√
y

2l
− 1

6l
with y = − ln(0.005Q),

whereQ is the confidence level. ForQ = 5, we getD̃l(Q) = 0.07 for l = 373 andD̃l(Q) = 0.043 for
l = 1000. The values of the K–S statistic

Dl√
l

= max

{
sup

1≤i≤l

(
i

l
− F(x(i))

)
, sup

1≤i≤l

(
F(x(i))− i − 1

l

)}
,

that were calculated for the exponential and Pareto d.f.F(x) by the empirical samples are given by 0.281
and 0.229 for the s.s.s., by 0.157 and 0.344 for the d.s.s., by 0.276 and 0.217 for the s.r., and by 0.282
and 0.259 for the i.r.t., respectively. Since(Dl/

√
l) > D̃l(Q) holds in each case, theH0-hypothesis that

the empirical distribution coincides with the selected theoretical one should be rejected.
In Figs. 6–9 the polygram and the P–R estimate are presented for the s.s.s., d.s.s., s.r. and i.r.t. samples,

respectively. Each figure depicts two graphs to demonstrate better the behavior on the tails and for
small values. All graphs were constructed in the pointsx(1), . . . , x(l). Both estimates were first applied
to the samples transformed by (12), i.e.{yi = 2/π arctan(xi), i = 1, . . . , l}, and then the inverse
transformations (11) for a polygram and (13) for a P–R estimate were used. The polygrams were calculated
by the formulas (18) and (6) (applied togk,l), the P–R estimates by (16).

The parameterh of the P–R estimate was computed by theω2- andD-methods, i.e. by the Eqs. (20)
and (21), called P–R estimate 1 and P–R estimate 2, respectively. The valuesh ∈ {7.5 × 10−4,8.1 ×
10−3,1.75× 10−4,2.3 × 10−4} are provided forlω̂2

l = 0.05 for the s.s.s., d.s.s., s.r. and i.r.t. samples,
respectively. The valuesh ∈ {3.6 × 10−3,9.5 × 10−5,2.6 × 10−4} are provided forD̂l = 0.5, for the
d.s.s., s.r. and i.r.t. samples, respectively. For s.s.s.D̂l never reaches its maximum likelihood value for
anyh and we did not apply theD-method for the s.s.s. We see that the discrepancy methodsω2 andD
select similar values ofh. The parameterk of the polygram was only calculated by theD-method (see
(22)).k is equal to 11 forl = 373 and 17 forl = 1000.

Fig. 6. Size of the sub-session sample: estimation of the probability density function.
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Fig. 7. Duration of the sub-session sample: estimation of the probability density function.

Fig. 8. Size of the response sample: estimation of the probability density function.

Fig. 9. Inter-response time sample: estimation of the probability density function.
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The P–R estimate and the polygram restore the tail of the p.d.f. in a similar manner for each considered
r.v. except the s.s.s. The difference between the estimates occurs for the small values. The maximal values
of the polygram and the P–R estimate are given by 165.049 and 48.518 for s.s.s., 14.7 and 2.277 for d.s.s.,
999.001 and 196.728 for r.s. and 98.605 and 70.557 for i.r.t., respectively. Due to the small distances
between the order statistics near zero the polygrams may have big values. The P–R estimate is smoother.
The difference became smaller for large sample sizes.

5. Conclusions

Considering the WWW-traffic characterization in the Internet, we have developed in this paper a new
statistical methodology to analyze the corresponding measurements of limited size. We have proposed
a nonparametric framework to estimate the underlying long-tailed p.d.f. of a relevant r.v. Following this
approach, we have assumed that just general information about the kind of the distribution is available. To
implement the proposed approach, a Parzen–Rosenblatt kernel estimate and a histogram with statistically
equi-probable cells, called a polygram, are selected.

To improve the behavior of the P–R estimates on the tails and to getL1-consistent estimates for
the long-tailed p.d.f., the transformation of the initial r.v. to a new one having a p.d.f. with a compact
support on the interval [0,1] is proposed. Its introduction allows us to apply apart from the P–R estimate
those estimates defined on a closed interval such as a histogram or projection estimates. Furthermore, an
algorithm to constructL1-consistent estimates has been described.

From a practical point of view, we are interested in the accuracy of the estimation for empirical samples
of limited size. The reliability of the estimates is provided by the selection of smoothing parameters. In
the paper two discrepancy-type methods, i.e. theω2- andD-method, are used to select these parameters.
They provide the estimation based on the observed ungrouped sample points. To our best knowledge,
theD-method is applied in this paper for the first time to smooth a polygram. Theω2- andD-methods
provide a sufficient accuracy and are simpler to apply than the cross-validation method. By a simulation
study we have shown that for a heavy-tailed Weibull distribution a polygram and the P–R estimate with
a compact kernel are reliable in theL1 andL2 metric.

To illustrate the power of the proposed estimation approach, we have finally applied it to analyze
measurements arising from WWW-traffic. The latter were gathered at the Computer Science Department
of the University of Würzburg. Using these real data, the p.d.f.s of relevant WWW-traffic characteristics
have been estimated. We have shown that exponential and Pareto distributions are not appropriate models
for the densities of the underlying r.v.s. It was demonstrated that the P–R estimate and a polygram work
in a similar manner on the tails and are different for small values of a r.v. if the sample size is sufficiently
small. The difference between these estimates became less for large sample sizes.

In conclusion, we have pointed out a new effective way to cope with the thorough statistical analysis
of measured data of WWW-traffic characteristics. This sound data analysis is the first and one of the
most decisive steps towards an effective design of the IP-based transport infrastructure in the extremely
variable environment of the Internet.
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