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Abstract

All self-respecting nonlinear scientists know self-organizationwhen they seeit: except when we disagree.
For this reason,if no other, it is important to put somemathematical spine into our 
opp y intuitiv e notion
of self-organization. Only a few measuresof self-organization have been proposed;none can be adopted in
good intellectual conscience.

To �nd a decent formalization of self-organization,we needto pin down what we mean by organization.
The best answer is that the organization of a processis its causal architecture | its internal, possibly
hidden, causalstates and their interconnections. Computational mechanics is a method for inferring causal
architecture | represented by a mathematical object called the � -machine | from observed behavior. The
� -machine capturesall patterns in the processwhich have any predictive power, socomputational mechanics
is alsoa method for pattern discovery. In this work, I develop computational mechanics for four increasingly
sophisticated typesof process| memorylesstransducers,time series,transducerswith memory, and cellular
automata. In each caseI prove the optimalit y and uniquenessof the � -machine's representation of the causal
architecture, and give reliable algorithms for pattern discovery.

The � -machine is the organization of the process,or at least of the part of it which is relevant to our
measurements. It leads to a natural measureof the statistical complexity of processes,namely the amount
of information neededto specify the state of the � -machine. Self-organization is a self-generatedincrease
in statistical complexity. This ful�lls various huncheswhich have beenadvanced in the literature, seemsto
accord with people's intuitions, and is both mathematically preciseand operational.
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recommendthis combination to anyone elsewriting a dissertation at UW, as it's much easier than trying
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number of graphics programs, but all the box-and-arrow diagrams were done using the free program dot
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Chapter 1

In tro duction

This is a book about causal architecture, pattern discovery, complexity and self-organization. Those are
vague, even grandiose themes. You may well doubt that I have anything worthwhile to say about any of
them, let alone all of them; if I found a book with this title (by someoneelse!), I'd be skeptical myself. Still,
by the end I hope to have convinced you that there is an optimal method for discovering causalpatterns in
data, that it givesus a natural and satisfying measureof complexity, and that it at least might give us an
operational test for self-organization.

Let metry to unpack that a little. The problem of trying to determinecausalrelations from observations is
very ancient, asare objections that no such thing is possible1. Similarly ancient is the problem of discovering
patterns in the natural world, and of doing so reliably, without fooling ourselves. Even the notion of self-
organization (though not that name) is very old, being clearly articulated by Descartesat the beginning of
the scienti�c revolution. And similarly for complexity. All of theseproblems can be, and often are, phrased
in vague, suggestive ways which hint at connections to each other. But phrased that way, they hint at
connectionsto everything under the sun, and much elsebeyond. What I intend to do here is show that the
notion of causalarchitecture can be made precise;that the inferenceof causalarchitecture is a special case
of pattern discovery, which is also precise; and that a particular method of discovering causal patterns is
optimal. The rest will follow more or lessnaturally from this.

But �rst I should say a little bit about self-organization, and why it's worth explicating.

1.1 Self-Organization

Set a child alone with a heap of Legos,and in an hour the Legosare probably a lot more ordered than they
were at the start. Their organization has increased,but in a prett y unmysterious and, to us, uninteresting
way: the kid organized them. On the other hand, there are somethings which will organize without this
kind of outside intervention, which self-organize.(Compare Figure 1.1 with Figure 1.2.)

There is a long tradition of interest in self-organizingprocesses(seeSection1.5 below); in recent decades,
as the poet (Sterling 1985) says, \the march of sciencebecamea headlong stampede." This has obscured
the fact that we do not have anything like a theory of self-organization, not even an unambiguous test for
it. The point of this book is not to provide a full-
edged theory of self-organizationbut, more modestly, to
formalize the concept in a way which leadsto practical tests.

Currently , the state of the art for testing whether or not a processis self-organizingboils down to \I know
it when I seeit." This may be acceptableto artists and SupremeCourt Justices,but it cannot satisfy those
who fondly imagine their trades to be exact sciences. Moreover, there are likely to be many caseswhere
my intuition con
icts with yours; this is notoriously the casewith art, despite the fact that Homo sapiens

1For some of the earliest history of the problem of causation, see Kogan (1985) and his sources, ibn Rushd (Av erro•es)
(1180{1185/1954) and al Ghazali (1100/1997).
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Figure 1.1: Pattern formed by di�usion-limited aggregation (Vicsek 1989; Barab�asi and Stanley 1995;
D'Souza and Margolus 1999). At each time-step, particles (pale dots) perform independent random walks; if
one of them hits the aggregate(dark mass), it stops moving and joins the aggregate.This image (made on
a CAM 8 computer) shows a pattern formed on a 1024� 1024grid, starting with a single aggregateparticle
at the center and an initial density of free particles of 0:20, after about 1:7 � 104 time-steps. This cellular
automaton (Chapter 8) models many natural self-organizingprocesses(Ball 1999,ch. 5).
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Figure 1.2: Detail from Japanesemaple leavesstitched together to make a a 
o ating chain; the next day it
became a hole; supported underneath by a wovenbriar ring, by Andy Goldsworthy (1990).

has beenexposedto it since the Old Stone Age2. Given that self-organization is a recent concept, and one
whosecareful use hasn't beenunder a lot of cultural selection pressure,what's surprising is not that there
are controversiesover whether, e.g., turbulent 
o ws or ecologicalsuccessionsare self-organizing,but that we
have any agreement at all about what self-organizes.

1.2 Formalizing an In tuitiv e Notion

Most of our notions are intuitiv e, unformalized, and vague. This suits us well enough, most of the time,
and arguably some degreeof vaguenessis inevitable. Still, from time to time we want to make a notion
lessvague, lessintuitiv e and more explicit, more amenableto examination and reasoning| to formalize it.
That's the casehere: we want to make \self-organizing" a formal concept and no longer just an intuitiv e
one. In essence,we want a de�nition, \ x is self-organizing i� x is : : : ," followed by a list of individually
necessaryand jointly su�cien t conditions.

Now, it's not as though \self-organizing" has someinner essencewhich such a de�nition tries to capture.
(If it did, we'd be in less need of formalization!) Rather, the goal is to replace a squishy notion with a
more rigid one which can do the samework, and more besides. As the usual authorities in the matter of
formalizing intuitions (Quine 1961) insist, the goal is that the formal notion match the intuitiv e onein all the
easycases;resolve the hard onesin ways which don't make us boggle; and let us frame simple and fruitful
generalizations. This is of a piecewith the art of de�nition in mathematics generally, nicely put by Spivak
(1965, p. 104):

Stokes' theorem sharesthree important attributes with many fully evolved theorems:
2As the poet (Kipling 1940) warns us, \But the Devil whoops, as he whooped of old: `It's clever, but is it Art?"' Of course,

we want things which aren't clever, or art : : : .
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1. It is trivial.

2. It is trivial becausethe terms appearing in it have beenproperly de�ned.

3. It has signi�can t consequences.

Well, not quite all of a piece: we want a concept which applies to real physical systems,too, so we want
to be able to decide whether it applies using just experimental data, or, in a pinch, models not too far
abstracted from data. And the simple, fruitful generalizationswill have to wait for someoneelse,or at least
someother book.

1.3 The Strategy

The notion of self-organization does not yield to frontal assault. We need (as it were) to tunnel under its
walls of confusion and then take it from within; and to do that, we needtunnels, and tunneling machinery.
Less metaphorically, I plan to convince you that we should represent the causal architecture of processes
using one particular kind of mathematical object. I will also convince you that these representations can
be discovered from data | that the pattern discovery problem is soluble. I am going to do this four times
over, for four di�eren t and increasinglysophisticatedkinds of processes:memorylesstransducers,time series,
transducerswith memory, and cellular automata.

Having reducedyou to a suggestiblestate by proving optimalit y theorems,it will be fairly easyto convince
you that the causalarchitecture of a processis its organization. And then the tric k will be turned, because
there is a natural quantitativ e measureof the complexity of the causalarchitecture, i.e., of the organization
of the process.

A word about the math. I aim at a moderate degreeof rigor throughout | but as two wise men have
remarked, \One man's rigor is another man's mortis" (Bohren and Albrecht 1998). My ideal has been to
keep to about the level of rigor of Shannon (1948)3. In someplaces(lik e Appendix B.3), I'm closer to the
onset of mortis. No result on which anything elsedepends should have an invalid proof. There are places,
naturally , where I am not even trying to be rigorous, but merely plausible, or even \ph ysical," but it should
be clear from context where those are.

1.4 A Summary

The outline of the book is as follows.
This chapter closeswith a section sketching, very brie
y , the histories of the idea of self-organization,

of methods of pattern discovery, and of computational mechanics. Chapter 2 discussesprevious proposals
for how to measureorganization, which leads to a more general discussionof how to measurecomplexity
and how to de�ne and describe patterns. I conclude that chapter by rejecting all but one of the previous
proposals for quantifying self-organization, and giving a list of desiderata that any approach to patterns
should ful�ll. Readerswho wish to go straight to the sciencemay skip both Section 1.5 and Chapter 2,
except for Section 2.3.5.

The rest of the book develops the only approach to patterns I know of which meets all those require-
ments, namely the method of computational mechanics developed by Jim Crutch�eld and his minions, one
of which I have the honor to be. Chapter 3 builds up computational mechanics in the simplest setting, that
of causal relationships which depend only on the present value of measuredvariables, or memorylesstrans-
duction (Shalizi and Crutch�eld 2000b). This is where I intro duce one of the key conceptsof computational
mechanics, that of causal states(�rst de�ned by Crutch�eld and Young (1989)), and show that they are the
unique, optimal, minimal predictors of the transduction process.

3Of course, a mathematician might say that that's not rigorous at all, but this is supposed to be physics, and I would be
extremely happy if annoyance at my style led people to re-do this work with all the bells, � -algebras, whistles, categories and
gongs.



5

Chapter 4 extendsthe approach to the more sophisticatedsetting of time seriesand (classical) stochastic
processes.Here I intro duce the other key concept of computational mechanics, that of the � -machine, which
shows the structure of connectionsover time between causal states. Using the � -machine, we seethat the
causalstatesalways form a Markov process.This is satisfying ideologically, and has interesting information-
theoretic and ergodic consequences.While � -machinesthemselvesdate back to Crutch�eld and Young (1989),
the methods of proof and results presented here follow Crutch�eld and Shalizi (1999) and especially Shalizi
and Crutch�eld (2001).

The next three chapters build on the computational mechanics of time series.Chapter 5 describesa new
procedurefor reconstructing the causalstatesand the � -machine of a time seriesfrom data, with a number of
advantagesover prior methods (Klinkner and Shalizi 2001). Chapter 6 comparesand contrasts computational
mechanicswith a bunch of other, better-known ways of dealing with time seriesand their complexity (Shalizi
and Crutch�eld 2001). Chapter 7 shows how to build � -machines for stochastic transducers with memory,
by treating such transducersas coupled time-series(Shalizi and Crutch�eld 2000a).

Chapter 8 intro ducescellular automata, �rst in a very informal way, then in a more formal way which
makesclear that they are dynamical systems,in two di�eren t ways, and much like any other bunch of maps,
with all the modern conveniences(attractors, basins of attraction, etc.). Then, in Chapter 9 I discussa
very useful set of tools that developed by Crutch�eld and Hanson to deal with the dynamics of spatial
con�gurations in CA, using the notion of a \regular language" from computer science. These tools let us
decomposeone-dimensionalCA con�gurations into extended domains and localized particles. The domains
areregionsof spaceand time which are, in a precisesense,doing next to nothing; the particles arepropagating
disturbancesin (or between) the domains. Following Hordijk, Shalizi and Crutch�eld (2001), I usethe tools
to prove a limit on how many ways the particles in a given CA can interact, and sincethe particles are what
the CA computeswith, this also limits the CA's computational power.

The domain-and-particle tools amount to a kind of purely spatial computational mechanics, and they
employ a set of spatial causal states. For technical reasons,spatial computational mechanics only applied
to one-dimensionalcellular automata (or 1+1D, to �eld theorists), a restriction known as the 2D bummer
(Feldman). A fully spatio-temporal computational mechanics, like a spatial computational mechanics for
higher dimensions,seemedout of reach for the longest time. (Life would be easierif the universeconsisted
of a single point (Calvino 1965/1968,ch. 4).) Chapter 10 explains what the di�culties were, shows how to
overcomethem soasto de�ne local causalstatesfor each point in space-time,and showsthat the causalstates
of spatial computational mechanicsare alsospatio-temporal causalstates(Shalizi, Haslinger and Crutch�eld
2001).

The last chapter summarizes everything that's been done in the book, for the bene�t of those who
only read intro ductions and conclusions. I proceed to de�ne emergenceand self-organization, following
Crutch�eld (1994a, Crutch�eld (1994b) with some technical re�nements, and an illustrativ e back-of-the-
envelope calculation. Then I list some unsolved problems and desirable extensions of the mathematical
foundation of computational mechanics. I close by throwing out suggestionsfor things to examine with
these tools, developed in our group at SFI, somevague,grandioseideasabout learning, and prophecy that
stock-market quants will go the way of Lancashireweavers. Someof this material is frankly speculative, but
I hope by that point you'll be so overwhelmed that you'll accept anything I say | that is, that you'll be
swayed by the intrinsic merits of my arguments.

A couple of appendicesfollow, to remind you about mathematical tools (information theory, conditional
measures,formal languages,etc.) you probably forgot how to use before I was out of diapers, and to hold
more peripheral bits of math which would clog up the main chapters.

The key chapters, which should form a coherent sequence,are 3, 4, 7 and 10. The last two are partially
independent of each other, but if you're interested in the spatial-processmaterial in Chapter 10, you should
probably read Chapter 9 as well.
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1.5 Historical Sketch

[Consider] what would happen in a new world, if God were now to create somewhere in the
imaginary spaces matter su�cient to composeone, and were to agitate variously and confusedly
the di�er ent parts of this matter, so that there resulted a chaos as disordered as the poets ever
feigned, and after that did nothing more than lend his ordinary concurrence to nature, and allow
her to act in accordance with the laws which He had established : : : . I showed how the greatest
part of the matter of this chaosmust, in accordance with theselaws, disposeand arrangeitself in
sucha way as to present the appearance of heavens;how in the meantime someof its parts must
compose an earth and some planets and comets, and others a sun and �xed stars. : : : I came
next to speak of the earth in particular, and to show how : : : the mountains, seas, fountains,
and rivers might naturally be formed in it, and the metals produced in the mines, and the plants
grow in the �elds and in general, how all the bodies which are commonly denominated mixed or
composite might be generated : : : [S]o that even although He had from the beginning given it no
other form than that of chaos,provided only He had established certain laws of nature, and had
lent it His concurrence to enableit to act as it is wont to do, it may be believed, without discredit
to the miracle of creation, that, in this way alone, things purely material might, in courseof time,
havebecome such as we observethem at present; and their nature is much more easily conceived
when they are beheld coming in this manner gradually into existence, than when they are only
considered as produced at once in a �nished and perfect state.
ReneDescartes(1637, part 5)

This section consistsof a few brief remarks on the invention and useof the idea of self-organization, so
readerswho just want to go straight to the sciencecan skip it. If you're of the opposite inclination, and want
more details, there is, alas,no decent history of self-organizationfor me to point you to. In the unlikely event
that historians of scienceread thesepages,I should like to bring this little-needed gap to their attention 4.

1.5.1 Origins of the Concept

While the notion of spontaneous, dynamically-produced organization is very old5, it only crystallized into
the term \self-organization" in the yearsafter the SecondWorld War, in circles connectedwith cybernetics
and computing machinery (Yovits and Cameron1960;Von Foeresterand Zopf Jr 1962). The �rst appearance
of the term seemsto be in a 1947paper by W. RossAshby6.

Remarkably, Ashby gave a prett y clear explanation of what he meant by \organization": to paraphrase,
the organization of a system was the functional dependenceof its future state on its present state and its
current external inputs, if any. That is, if the state spaceis S and the input spaceis I , the organization
of the system is the function f : S � I 7! S which gives the new state. Ashby understood a system to be
self-organizingif it changed its own organization, rather than being rewired by an external agency. How is
that possible?

4The historical remarks in Prigogine's popular books (Prigogine 1980; Prigogine and Stegners 1979/1984) are at best badly
informed, at worst tendentious. Krohn, K •uppers and Nowotny (1990) is highly unreliable scienti�cally and historically .

5The �rst articulation of the concept I have found is that by Descartes, in the epigraph to this section. (See also Descartes
1664.) It subsequently played an imp ortan t, if subterranean, role in Europ ean culture, in naturalistic philosophy (Vartanian
1953), in associationist psychology (Hume 1739) and in political and economic lib eralism (Ma yr 1986). Before the early modern
period, naturalistic philosophies seem to have relied on \time and chance" explanations of organization, along the lines of the
ancient atomists. But these are matters for another time, and another book.

6Most sources which say anything about the origins of the term, attribute it to Farley and Clark (1954), but this is plainly
wrong | the latter cite Ashby. As to Ashby himself, he was a British psychiatrist who in the 1940s independently arriv ed
at many of the ideas which Norb ert Wiener bundled as \cyb ernetics," and was activ e in the cybernetics movement after the
war. He is a seriously underappreciated �gure in the pre-history of the sciencesof complexit y. Not only is there no biograph y
of him, but he isn't even mentioned in the standard historical reference works, and there's one sentence on him in Heims's
The Cybernetics Group (1991). See, however, Ashby's books (1956, 1960), Wiener (1954), and the obituary notice by Conant
(1974).
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Ashby's ingeniousanswer is that it is not. Organization is invariant. It may be, however, that the function
f is well-approximated by another function g in a certain region of the state spaceand by a di�eren t function
h in another region. If the dynamics then drive the system from the �rst region to the second,we will see
an apparent change in the organization, from g to h, though the true, underlying dynamics remains the
same. (Ashby elaborated on this argument in his 1962paper. For suggestive remarks on the importance of
thresholds in this process,seeAshby (1960).)

At the end of the day, the conceptsof organization and self-organizationwe will emergewith will be quite
similar, verbally, to Ashby's. There are three reasonswhy this book doesn't end right here. The �rst is that
Ashby's ideasabout what constitutes self-organizationhave beenprett y thoroughly ignored by everyoneelse
who's usedthe idea. The secondis that they don't go far enough: they don't let us distinguish changesthat
lead to more organization from those which lead to less,or even from those which are neutral with respect
to how organizedthe processlooks. The third is that, while the wordy version of organization, in my sense,
will be very close to Ashby's, the math will be prett y di�eren t, much more rigorous, and will resolve the
secondproblem, of distinguishing increasesin organization from simple changes.

1.5.2 Uses of the Concept

After its intro duction, the main incubators of self-organization were physics, computer science,and the
nebulous, ill-fated enterprise of \systems theory". In the physical sciencesit was extensively applied, from
the 1970sonwards, to pattern formation and spontaneoussymmetry breaking (Nicolis and Prigogine 1977)
and to cooperative phenomena(Haken 1977). To put it kindly, the real value of these early works was
inspiring the production of theories which actually explain things (Manneville 1990; Cross and Hohenberg
1993;Ball 1999). The work of Eigen and Schuster (1979) and of Winfree (1980) were notable exceptionsto
this rule, since they were both early and genuinely explanatory.

Some(Klimon tovich 1990/1991) have claimed that the transition from lamellar to turbulent 
o w is an
instance of self-organization; others have just as vigorously denied this; there has beenno resolution of the
controversy, and no meansof resolving it (Frisch 1995). More recently , there has beengreat interest in the
idea that somesystemscan self-organizeinto critical states (Bak, Tang and Weisen�eld 1987;Jensen1998).
Somepeople make very grand claims indeed for this idea (Bak 1996); others contend that it hasn't been
demonstratedto apply to a singlenatural or even experimental system. In any case,the dispute doesnothing
to clarify what \self-organized" means.

Within computer science,the primary applications have been to learning (Selfridge 1959; Yovits and
Cameron1960),especially unsupervised learning (Hinton and Sejnowski 1999)and memory (Kohonen 1984;
Kohonen 2001); to adaptation (Holland 1992;Farmer, Lapedes,Packard and Wendro� 1986);and to \emer-
gent" or distributed computation (Forrest 1990;Resnick 1994;Crutch�eld and Mitc hell 1995). More recently ,
self-organization has begun to feature in economics(Schelling 1978; Krugman 1996; Shalizi 1996b), and in
ecology(Arth ur 1990), complete with the now-expected disputes about whether certain processes(such as
the successionof plant communities) are self-organizing.

In the 1980s,self-organization becameone of the ideas,models and techniques bundled together as the
\sciencesof complexity" (Pagels1988)| for good reason,aswe'll seewhen we get to the connectionbetween
complexity and organization (Chapter 2). This bundle has been remarkably good at getting itself adopted
by at least someresearchersin essentially every science,so the idea of self-organizationis now usedin a huge
range of disciplines (see,e.g., Ortoleva 1994), though often not very well (again see,e.g., Ortoleva 1994).

1.5.3 History of Pattern Disco very and Computational Mec hanics

I'll close this chapter with a few brief remarks on the histories of pattern discovery and computational
mechanics. For more on these matters, especially on techniques akin to computational mechanics, see
Shalizi and Crutch�eld (2000c)and Chapter 6 below. It might even be a good idea to read this sectionafter
reading Chapters 2{4.

The ideal of algorithmic pattern discovery | of automatically constructing a model directly from data,
without prior assumptionsasto the form of the model | hasbeenthe goal, sometimesmore or lessobscured,
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of much work in computer scienceon unsupervised learning. It was very plainly part of the motivation of
(Hebb 1949) when he founded the �eld of unsupervised learning. For reasonswhich would take too long to
go into, however, machine learning changed directions, to becomea study of how (in essence)to �nd the
best model from within a given, pre-speci�ed classof models, rather than building a model from the data.
Techniquesof systemidenti�c ation in control theory (Stengel 1994) are similarly limited.

In the 1970s,however, statisticians and information theorists (Akaike1998;Rissanen1978;Rissanen1989)
developed model-selection and model-identi�cation techniques which sought to balance accuracy against
complexity, de�ning both information-theoretically . Every stochastic model assignsa certain probabilit y
(technically, the likelihood) to a given body of data. The classicalstatistical technique of maximum likelihood
(Cram�er 1945) is simple to selectthat model from the classof those consideredadmissiblewhich makesthe
data most likely. A fundamental result in information theory says that the optimal (minimal mean) length
for the bit-string encoding a given signal is proportional to the negative logarithm of the probabilit y of the
signal. Maximum likelihood thus correspondsto minimizing the length of the bit string neededto encode the
data. The minimum description-length principle of Jorma Rissanensays to pick the model which minimizes
the sum of this bit string, plus the length of the bit string neededto specify the model from within the class
of admissiblemodels. This not only generalizesmaximum likelihood, it generalizesalgorithmic information
| by letting us use stochastic models, it lets us describe random processvery concisely. This was not yet
pattern discovery, however, sincethe model classoften had to be tightly constrained for tractabilit y.

The �rst sustainede�ort at what we may reasonablecall pattern discovery instead camefrom statistical
physics and nonlinear dynamics. In the early 1980s,dynamicists (Packard, Crutch�eld, Farmer and Shaw
1980;Takens1981)developed techniquesfor automatically identifying, up to a di�eomorphism, a the attrac-
tor of a smooth dynamical systemfrom a time-seriesof oneof its coordinates. Despite occasionalabuses,this
method, variously known as \attractor reconstruction," \delay embedding," \geometry from a time series,"
etc., has becomethe single most valuable tool in experimental dynamics (Kantz and Schreiber 1997).

It was on this background that, in 1986, Peter Grassberger proposed his \true measurecomplexity,"
identifying the complexity of a dynamical system with the information neededto specify the state of its
optimal predictor. He did not, however, give any indication of how such a predictor and its states might be
found, nor even what \optimal prediction," in this sense,might mean. Simultaneously and independently ,
\geometry from a time series"evolved into \equations of motion from a data series"(Crutc h�eld and McNa-
mara 1987;Timmer, Rust, Horbelt and Voss2000). In this method, each small region of the state-spacehad
a vector �eld of speci�ed functional form �tted to it. The �tting was calculated to preserve the predictive
information in the data series,as well as satisfying whatever smoothnessconstraints were imposed.

The crucial step to computational mechanicswasto realizethat a \pattern basis" (Crutc h�eld and Hanson
1993b) could be constructed directly from the data, and that it would give the optimal predictor, as well as
the equationsof motion. This step wastaken more than a decadeagoby Crutch�eld and Young (1989), who
intro duced the essential conceptsof time-seriescomputational mechanics. Sincethen, their ideashave been
used to analyze many aspects of dynamical systems,such as intrinsic computation (a concept intro duced
by Crutch�eld; Crutch�eld and Young 1990), multifractal 
uctuation statistics (Young and Crutch�eld
1993), the automatic construction of Markov partitions for so�c systems(Perry and Binder 1999),stochastic
resonance(Witt, Neiman and Kurths 1997) and hidden Markov models (Upper 1997). This part of the
theory has been successfullyapplied to real-world data, from the dripping faucet experiment (Gon�calves,
Pinto, Sartorelli and de Oliveira 1998),and from atmospheric turbulence (Palmer, Fairall and Brewer 2000).
Feldman and Crutch�eld (1998a) extendedthe theory to equilibrium spin systems. Crutch�eld and Hanson
(1993b) extendedit to such spatial processesascellular automata. The spatial versionof the theory hasbeen
usedto understand emergent phenomenain cellular automata (Hanson and Crutch�eld 1997) and, perhaps
most importantly , evolved spatial computation (Crutc h�eld and Mitc hell 1995).
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Chapter 2

Measuring Pattern, Complexit y and
Organization

2.1 Organization

Organized matter is ubiquitous in the natural world, and there is even a branch of physicswhich studies it:
statistical mechanics. But that �eld has no coherent, principled way of describing, detecting or quantifying
the many di�eren t kinds of organization found in nature. Statistical mechanics has a good measureof one
kind of disorder in thermodynamic entropy, and many people think this will do the job. For instance,
Wolfram (1983) and Klimon tovich (1990/1991) are among the handful of physicists who are explicit about
what they mean by \self-organizing," and both identify it with \decreasing entropy". But thermodynamic
entropy fails asa measureof organization in many ways. The most basicproblem is that it doesn't distinguish
betweenthe many di�eren t kinds of organization matter can exhibit. Just in equilibrium, a very partial list
would include:

� Dilute homogeneousgases;

� Crystals, with many di�eren t sorts of symmetry;

� Quasicrystals;

� Low Tc superconductors;

� High Tc superconductors;

� The long-rangeorder of ferromagnets;

� The di�eren t long-rangeorder of antiferromagnets;

� The short-range order and long-range disorder of amorphous solids (Zallen 1983) and spin glasses
(Fischer and Hertz 1988);

� The partial positional and orientational orders of the many di�eren t liquid crystal phases(Collings
1990;de Gennesand Prost 1993);

� The very intricate structures formed by amphiphilic moleculesin solution (Gompper and Schick 1994).

Now, statistical mechanics does have a procedure for classifying and quantifying these kinds of order.
It goes like this (Sethna 1991). A theorist guessesan order parameter, informed by somemixture of what
worked in other problems, experimental �ndings, dubious symmetry arguments and luck. Shethen further
guessesan expansion for the free energy of the system in powers of this order parameter. Finally, if she
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is very lucky, she not only extracts somequantitativ e predictions from that expansion, but persuadesan
experimentalist to test them, at which point they are most likely found to be wrong, and the whole cycle
starts over. It is a remarkable testimony to the insight, skill and tenacity of condensedmatter theorists,
not to mention their sheernumbers, that this works anywhere near as well as it has (Forster 1975;Yeomans
1992;Chaikin and Lubensky 1995).

Despite oft-expressedhopes to the contrary (by Prigogine (1980), Haken (1977), etc.), the ideal of ex-
panding the freeenergy, or someother Lyapunov functional, in powersof an order parameter fails completely
outside of equilibrium (Anderson and Stein 1987; Cross and Hohenberg 1993). This is not to say that the
idea of broken symmetry isn't useful in understanding pattern formation, nor that there aren't sometech-
niques (such as \phase equations") which apply to a wide range of pattern-forming systems,and look a bit
like what we're used to in equilibrium (Manneville 1990;Crossand Hohenberg 1993). But it is to say that
matters are even more ad hoc, and there is even lessreasonto think that current techniquesare universally
applicable. Nobody, for instance, expects to be able to �nd an order-parameter-type theory of turbulence,
though it's obvious to visual inspection (Van Dyke 1982) that turbulent 
o ws do have a signi�can t degree
of organization, which seemsto involve vorticit y (Chorin 1994).

Going on beyond conventional condensedmatter physics, it is hard to seehow any seriouscasecould be
made for taking thermodynamic entropy as a measureof biological order, though somevery great scientists
(most notably, Schr•odinger) have done so without, it appears, a secondthought. Biological systemsare
open, so what matters, even from the perspective of energetics,is free energyor someother thermodynamic
potential, not entropy as such. Worse, there are many biological processeswhich everyone agreeslead to
more organization which are driven by increasesin entropy (Fox 1988). Fundamentally , as Medawar (1982,
p. 224) nicely put it, \biological order is not, or not merely, unmixedupness." Indeed, he goeson to say that
(p. 226)

In my opinion the audaciousattempt to reveal the formal equivalenceof the ideasof biological
organisation and of thermodynamic order, of non-randomnessand information must be judged
to have failed. We still seeka theory of order in its most interesting and important form, that
which is represented by the complex functional and structural integration of living organisms.

The only thing wrong with this passageis that, as we've just seen,we don't even have a good theory of
organization for substancesin thermodynamic equilibrium!

If attempts to deal with organization and structure by physicists have beendisappointing, at least there
have been some which are worthy of the name. The literature on biological organization (Lotk a 1924;
Needham1936; Needham1943a;Needham1943b; Lwo� 1962; Miller 1978; Peacocke 1983; Mitten thal and
Baskin 1992;Harrison 1993)consistsnot somuch of theories,asof expressionsof more or lessintensedesires
for theories,and more or lessclear suggestionsfor what such theoriesought to do | or elsethey're really not
about biological organization at all, but, say, recycled physical chemistry (Peacocke 1983; Harrison 1993).
(The work of Fontana and Buss (1994) is a welcomeexception.) The best that can be hoped for from this
quarter is an array of problems, counter-examplesand suggestions,which is not to be sneezedat, but not
enougheither. In fact, those of us who work on computational mechanics suspect that it could be the basis
of a theory of biological order; but that's yet another expressionof desire,and not even a suggestionsomuch
as a hint.

Outside biology, attempts to get a grip on what \organization" might or should mean are even fewer,
and of even lower quality. There is a large literature in economicsand sociology on organization, someof
which is quite interesting (March and Simon 1993; Arrow 1974; Williamson 1975; Simon 1991). But here
\organization" meanssomething like \collection of people with explicitly designatedroles and relations of
authorit y", and is contrasted with informal groupings such as \institutions" (Schelling 1978; Elster 1989a;
Elster 1989b;Eggertsson1990;Young 1998;Shalizi 1998b;Shalizi 1999), though both are organized.

Bennett (1985,1986,1990),apparently in despair, suggestedde�ning \complexit y" aswhatever increases
whenever something self-organizes.The problem with this, asBennett himself realized, is that it's not at all
clear when something self-organizes!But perhaps we can turn this around: for something to self-organize,
it must becomemore complex. Is it possibleto comeup with a measureof complexity?
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Figure 2.1: Generic complexity vs. disorder curve.

2.2 Complexit y Measures, or, the History of One-Hump ed Curv es

It is altogether too easy to come up with complexity measures. An on-line database of them (Edmonds
1997) contains 386 entries, despite not having beenupdated since 1997,and was surely not comprehensive
even then. Every few months seemsto produceanother paper proposingyet another measureof complexity,
generally a quantit y which can't be computed for anything you'd actually care to know about, if at all.
These quantities are almost never related to any other variable, so they form no part of any theory telling
us when or how things get complex, and are usually just quanti�cation for its own sweet sake.

The �rst and still classicmeasureof complexity is Kolmogorov's, which is (roughly) the shortest computer
program capable of generating a given string. This quantit y is in general uncomputable, in the sensethat
there is simply no algorithm which can calculate it. This comesfrom a result in computer scienceknown as
the halting problem, which in turn is a disguisedform of G•odel's theorem, and so is a barrier that will not
be overturned any time soon. Moreover, the Kolmogorov complexity is maximized by random strings, so it's
really telling us what's random, not what's complex, and it's gradually cometo be called the \algorithmic
information." It plays a very important role in every discussionof measuringcomplexity: in a pious act of
homageto our intellectual ancestors,it is solemnly taken out, exhibited, and solemnly put away as useless
for any practical application.1

So we don't want to con
ate complexity with randomness,while at the same time we don't want to
say that things which are completely uniform and orderly are complex either. Complex and interesting
stu� should be someplace \in the middle". This is conventionally illustrated by a drawing like Figure 2.1.
The �rst such curves to appear in the literature seemsto have been the \complexit y-entropy diagrams"
of Crutch�eld and Young (1989). One is reminded of kudzu, which was intro duced as a useful plant, and
becamea weedonly through thoughtless replication.

There are an immensenumber of ways of cooking up curveswhich look like that, especially sinceyou're
free to choose what you mean by \disorder," i.e., what you put on the x axis. A remarkably common
prescription is to multiply \disorder" by \one minus disorder," which of coursegives a one-humped curve
right away (Lopez-Ruiz, Mancini and Calbet 1995; Shiner, Davison and Landsberg 1999). There are two

1 I perform this ritual in Section 2.3.2 below, with citations.
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problems with all such measures. The �rst is that they don't really agreewith us about what things are
complex (Sol�e and Luque 1999;Crutch�eld, Feldman and Shalizi 2000a;Binder and Perry 2000). The second
is that they are, to use a term intro duced by Feldman and Crutch�eld (1998b), over-universal, failing to
distinguish betweenstructurally distinct kinds of organization which just sohappen to have the sameamount
of disorder. In other words, they really don't tell us anything about structure or organization or pattern at
all; they just give us a number, which we may admire at our leisure.

It would be nice to have a measureof complexity that gave us a one-humped curve, but only if we can
do it without cheating, without putting the hump in by hand. And the complexity measurehad better not
be over-universal | it must distinguish betweendi�eren t kinds of organization; betweendi�eren t patterns.

So how do patterns work?

2.3 Patterns

Theseambiguities, redundancies,and de�cienciesrecall thoseattributed by Dr. Franz Kuhn to
a certain Chineseencyclopedia entitled Celestial Emporium of BenevolentKnowledge. On those
remote pagesit is written that animals are divided into (a) those that belong to the Emperor,
(b) embalmed ones,(c) those that are trained, (d) suckling pigs, (e) mermaids, (f ) fabulous ones,
(g) stray dogs, (h) those that are included in this classi�cation, (i) those that tremble as if they
were mad, (j) innumerable ones,(k) those drawn with a very �ne camel's hair brush, (l) others,
(m) those that have just broken a 
o wer vase,(n) those that resemble 
ies from a distance.
| J. L. Borges(1964, p. 103), \The Analytical Languageof John Wilkins"

The passageillustrates the profound gulf between patterns, and classi�cations derived from patterns,
that are appropriate to the world and help us to understand it and those patterns which, while perhapsjust
as legitimate as logical entities, are not at all informativ e. What makes the Celestial Emporium's scheme
inherently unsatisfactory, and not just strange, is that it tells us nothing about animals. We want to �nd
patterns in a processthat \divide it at the joints, as nature directs, not breaking any limbs in half as a bad
carver might" (Plato, Phaedrus, 265D). (Cf. Crutch�eld (1992).)

I'm not talking, here, about pattern formation. I'm not even talking about pattern recognition as a
practical matter as found in, say, neuropsychology (Luria 1973), psychophysics and perception (Graham
1989), cognitive ethology (Shettleworth 1998), computer programming (Tou and Gonzalez 1974; Ripley
1996), or signal and image processing(Banks 1990; Lim 1990). Instead, I'm asking what patterns are and
how patterns should be represented. I want pattern discovery, not pattern recognition.

Most of what work there is on what patterns are has beenphilosophical; the part of it worth bothering
with is tied to mathematical logic. Within this, I distinguish two strands. One uses(highly) abstract algebra
and the theory of relations; the other, the theory of algorithms and e�ectiv e procedures.

The general idea, in both approaches, is that some object O has a pattern P | O has a pattern
\represented", \described", \captured", and soon by P | if and only if we can useP to predict or compress
O. The abilit y to predict implies the abilit y to compress,but not vice versa,so I'll stick to prediction. The
algebraic and algorithmic strands di�er mainly on how to represent P itself.

I should emphasizehere that \pattern" in this senseimplies a kind of regularity, structure, symmetry,
organization, and so on. Ordinary usagesometimesaccepts, for example, speaking about the \pattern" of
pixels in a particular sliceof between-channelsvideo snow; but I'll always call that the con�gur ation of pixels.

2.3.1 Algebraic Patterns

Although the problem of pattern discovery appears early, in Plato's Meno for example, perhaps the �rst
attempt to make the notion of \pattern" mathematically rigorous was that of Whitehead and Russell in
Principia Mathematica. They viewed patterns as properties, not of sets,but of relations within or between
sets,and accordingly they work out an elaborate relation-arithmetic (Whitehead and Russell1925{27,vol. I I,
part IV; cf. Russell1920,ch. 5{6). This starts by de�ning the relation-number of a relation betweentwo sets
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as the classof all the relations that are equivalent to it under one-to-one,onto mappings of the two sets. In
this framework relations share a common pattern or structure if they have the samerelation-number. For
instance,all squarelattices have similar structure sincetheir elements sharethe sameneighborhood relation;
as do all hexagonal lattices. Hexagonal and square lattices, however, exhibit di�eren t patterns since they
have non-isomorphic neighborhood relations | i.e., since they have di�eren t relation-numbers. Lesswork
has beendone on this than they | especially Russell (1948) | had hoped.

A more recent attempt at developing an algebraicapproach to patterns builds on semi-grouptheory and
its Krohn-Rhodesdecomposition theorem. Rhodes(1971) discussesa range of applications of this approach
to patterns. Along these lines, Rhodes and Nehaniv have tried to apply semi-group complexity theory to
biological evolution (Nehaniv and Rhodes1997). They suggestthat the complexity of a biological structure
can be measuredby the number of subgroups in the decomposition of an automaton that describes the
structure.

Yet another algebraic approach has beendeveloped by Grenander and co-workers,primarily for pattern
recognition (Grenander 1996). Essentially , this is a matter of trying to invent a minimal set of generators
and bonds for the pattern in question. Generatorscan adjoin each other, in a suitable n-dimensional space,
only if their bonds are compatible. Each pair of compatible bonds speci�es at once a binary algebraic
operation and an observable element of the con�guration built out of the generators. (The construction in
Appendix B.2, linking an algebraic operation with concatenationsof strings, is analogousin a rough way,
as are the \observable operator models" of Jaeger (2000).) Probabilities can be attached to these bonds;
these are postulated to be such as to give a Gibbs distribution over entire con�gurations. Grenander and
his colleagueshave usedthesemethods to characterize, inter alia, several biological phenomena(Grenander,
Chow and Keenan 1991; Grenander and Manbeck 1993). While the theory we'll end up with in chapters 4
and 10 could be phrasedin terms of generatorsand bonds,we give a constructive procedurefor making them
(unlik e the trial-and-error approach of Grenander), and our Gibbs distributions are derived, not postulated.

2.3.2 Turing Mec hanics: Patterns and E�ectiv e Pro cedures

The other path to patterns follows the traditional exploration of the logical foundations of mathematics, as
articulated by Frege and Hilb ert and pioneeredby Church, G•odel, Post, Russell, Turing, and Whitehead.
This relatively more popular approach beginswith Kolmogorov and Chaitin, who wereinterestedin the exact
reproduction of an individual object (Kolmogorov 1965; Chaitin 1966; Kolmogorov 1983; Li and Vitan yi
1993); in particular, they cared about discrete symbol systems,rather than (say) real numbers or smooth
vector �elds. The candidatesfor expressingthe pattern P were universal Turing machine (UTM) programs
| speci�cally , the shortest UTM program that can exactly produce the object O. This program's length
is called O's Kolmogorov-Chaitin complexity. Note that any scheme | automaton, grammar, or what-not
| that is Turing equivalent and for which a notion of \length" is well de�ned will do as a representational
scheme. Sincewe can convert from onesuch deviceto another | say, from a Post tag system(Minsky 1967)
to a Turing machine | with only a �nite description of the �rst system,such constants are easilyassimilated
when measuringcomplexity in this approach.

In particular, consider the �rst n symbols On of O and the shortest program Pn that producesthem.
What happens to the limit

lim
n !1

jPn j
n

; (2.1)

where jP j is the length in bits of program P? On the one hand, if there is a �xed-length program P that
generatesarbitrarily many digits of O, then this limit vanishes.Most of our interesting numbers, rational or
irrational | such as7, � , e,

p
2 | are of this sort. Thesenumbers are eminently compressible:the program

P is the compresseddescription, and so it captures the pattern obeyed by the sequencedescribing O. If the
limit goesto 1, on the other hand, we have a completely incompressibledescription and conclude,following
Kolmogorov, Chaitin, and others, that O is random (Kolmogorov 1965;Chaitin 1966;Kolmogorov 1983;Li
and Vitan yi 1993;Martin-L•of 1966;Levin 1974). This conclusionis the desiredone: the Kolmogorov-Chaitin
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framework establishes,formally at least, the randomnessof an individual object without appeals to proba-
bilistic descriptions or to ensembles of reproducible events. And it does so by referring to a deterministic,
algorithmic representation | the UTM.

There are many well-known di�culties with applying Kolmogorov complexity to natural processes.First,
as a quantit y, it is uncomputable in general, owing to the halting problem (Li and Vitan yi 1993). Second,
it is maximal for random sequences;this is either desirable,as just noted, or a failure to capture structure.
Third, it only applies to a single sequence;again this can be either good or bad. Fourth, it makes no
allowance for noise or error, demanding exact reproduction. Finally, lim n !1 jPn j=n can vanish, although
the computational resourcesneededto run the program, such as time and memory, grow without bound.

Noneof theseimpediments have kept researchersfrom attempting to useKolmogorov-Chaitin complexity
for practical tasks | such as measuring the complexity of natural objects (e.g. Gurzadyan (1999)), as a
basis for theories of inductiv e inference(Solomono� 1964; Vit�anyi and Li 1999), and generally as a means
of capturing patterns (Flake 1998). Rissanen'scomments on this can hardly be bettered, so I'll quote him
(Rissanen1989,p. 49):

It has been sometimesenthusiastically claimed that the algorithmic [i.e., Kolmogorov] com-
plexity provides an ideal solution to the inductiv e inferenceproblem, and that `all' we needis to
�nd an approximation to the non-computable algorithmic complexity and use the result to do
prediction and the other inferencesof interest. Well, this is a tall order, for there is nothing in
a universal computer that helps us to �nd a good model of a string. In fact, if we already know
the relevant properties of the string we can always write good programsfor it, but we don't learn
the properties by writing programs in the hopesof �nding short ones!

Someof these di�culties have been addressedby later workers. Bennett's logical depth, the number of
computational stepsthe minimal-length program P needsto produce O, tries to account for time resources
(Bennett 1985;Bennett 1986;Bennett 1990). Koppel's sophistication attempts to separateout the \regular-
it y" portion of the program from the random or instance-speci�c input data (Koppel 1987;Koppel and Atlan
1991). Ultimately , however, all theseextensionsand generalizationsremain in the UTM, exact-reproduction
setting and so inherit inherent uncomputabilit y. None of them is any good for anything practical.

2.3.3 Patterns with Error

An obvious next step is to allow our pattern P some degreeof approximation or error, in exchange for
shorter descriptions. We loseperfect reproduction of the original con�guration from the pattern. Given the
ubiquit y of noise in nature, this is a small price to pay. We might also say that sometimeswe are willing
to accept small deviations from a regularity, without really caring what the precisedeviation is. As many
have pointed out (e.g., Crutch�eld 1992), this is what we do in thermodynamics, where we throw away vast
amounts of uselessmicroscopicdetail in order to get workable macroscopicdescriptions.

Someinteresting philosophical work on patterns-with-error hasbeendoneby Dennett, with referencenot
just to questionsabout the nature of patterns and their emergencebut also to psychology (Dennett 1991).
The intuition is that truly random processescan be modeled very simply | to model coin-tossing, toss a
coin. Any prediction schemethat is more accuratethan assumingcomplete independenceipso facto captures
a pattern in the data. There is thus a spectrum of potential pattern-capturers ranging from the assumption
of pure noiseto the exact reproduction of the data, if that is possible. Dennett notes that there is generally
a trade-o� between the simplicit y of a predictor and its accuracy, and he plausibly describes emergent
phenomena(Crutc h�eld 1994a;Holland 1998) as patterns that allow for a large reduction in complexity for
only a small reduction in accuracy2. Of course,Dennett wasnot the �rst to considerpredictive schemesthat
tolerate error and noise; we'll look at someof the earlier work in Chapter 6. However, to my knowledge,
he was the �rst to have made such predictors a central part of an explicit account of what patterns are.
His account lacks the mathematical detail of the other approaches we have consideredso far, and it relies
on the inexact prediction of a single con�guration. In fact, it relies on exact predictors that are \fuzzed

2 I develop this idea quantitativ ely in Chapter 11.2.
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up" by noise. The intro duction of noise, however, brings in probabilities, and their natural setting is in
ensembles. It is in that setting that the ideas computational mechanics shareswith Dennett can receive a
proper quantitativ e treatment, and in which we will seethat we don't needto invoke exact predictors at all.

2.3.4 Causation

We want our representations of patterns in dynamical processesto be causal | to say how one state
of a�airs leads to or produces another. Although a key property, causality enters the theory only in an
extremely weak sense,the weakest one can use mathematically, which is Hume's (Hume 1739): one class
of event causesanother if the latter always follows the former; the e�ect invariably succeedsthe cause.
As good indeterminists, in the following I replace this invariant-successionnotion of causality with a more
probabilistic one, substituting a homogeneousdistribution of successorsfor the solitary invariable successor.
(A precisestatement appearsin De�nition 13's de�nition of causal states.) This approach results in a purely
phenomenologicalstatement of causality, and so it is amenable to experimentation in ways that stronger
notions of causality | e.g., that of Bunge(1959) | arenot. Salmon(1984) independently reachedessentially
the sameconcept of causality by philosophical arguments.

2.3.5 Synopsis of Pattern

We want an approach to patterns which is at once

� Algebraic, giving us an explicit breakdown or decomposition of the pattern into its parts;

� Computational, showing how the processstoresand usesinformation;

� Calculable, analytically or by systematic approximation;

� Causal, telling us how instancesof the pattern are actually produced; and

� Naturally stochastic, not merely tolerant of noisebut explicitly formulated in terms of ensembles.

Computational mechanics satis�es all thesedesiderata.
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Chapter 3

The Basic Case of Computational
Mec hanics: Memoryless Transducers

3.1 The Setup

Consider two discrete random variables X (taking values from X ) and Y (taking values in Y )1. We think
of X as the causesor inputs to some process,and Y as the e�ects or outputs. Causation is in general
stochastic, so we represent this by saying that Y is a random function of X . We assumethat Y depends
only on the current value of X , and not on any previous history of inputs. Let's call something which �ts
this description a memorylesstransducer. Many di�eren t physical systemsare memorylesstransducers. So,
a little more abstractly, are many problems in biology and social science,e.g., the output might be whether
a person dies of lung disease,and the inputs various risk factors (genotype, smoking, working in a mine,
whether or not the mine hasa union, etc.). The task is to predict Y aswell aspossiblefrom X . We'd like to
know which aspects of the input are relevant to the output, becausein generalnot all of them are, though
whether a given feature is relevant can depend on what valuesother features take on. We want to know all
the distinctions we can make about X which make a di�erence to the distribution of Y .

3.2 E�ectiv e States

Any prediction schemetreats someinputs the samewhen it calculatesits predictions. That is, any prediction
schemeis sensitive, not to the inputs themselves,but to equivalenceclasses2 of inputs. Generally it doesso
implicitly; but it is much better to be explicit about this.

De�nition 1 (E�ectiv e States of Memoryless Transducers) An e�ectiv e state is an equivalence class
of inputs. A partition of X is an e�ectiv e state class. For each e�ective state class, written R , there is a
function � : X 7! R which map the current input into the e�ective state in which it resides. We write the
random variable for the current e�ective state as R, and its realizations as � ; R = � (X ), � = � (x). When
two inputs x1; x2 belong to the samee�ective state, we write x1� � x2.

The collection of all e�ectiv e state classesis called Occam's pool.
At this point, we need a way to measurehow well a classof e�ectiv e states lets us predict the output.

The tools to do this are provided by information theory, which is explained in Appendix A.2.
1Here, and as nearly as possible through this book, upper-case italic letters will indicate random variables, and lower-case

ones their realizations.
2For a review of equivalence classes,partitions, and equivalence relations, seeApp endix A.1.
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De�nition 2 (Predictiv e Power of E�ectiv e States) We measure the predictive power of an e�ective
state class R by the entropy of outputs, conditional on the e�ective state, H [Y jR ]. R has more predictive
power than R 0 if and only if H [Y jR ] < H [Y jR 0].

In general,e�ectiv e states have lesspredictive power than the original input.

Lemma 1 (The Old Coun try Lemma) For any classof e�ective statesR ,

H [Y jR ] � H [Y jX ] : (3.1)

Proof. By Eq. A.25, for any function f , H [Y jf (X )] � H [Y jX ]. But for every R , there is an � such that
R = � (X ). HenceH [Y jR ] = H [Y j� (X )], and the lemma is proved.

Remark. The reasonthis is the \Old Country Lemma" will becomeclear when we considerits application
to time seriesin Chapter 4.

However, somee�ectiv e state classesare aspredictive asthe original inputs; we call such statesprescient.

De�nition 3 (Prescien t States for Memoryless Transduction) A set of states R is prescient if and
only if it has as much predictive power as the complete input space, i.e., i� H [Y jR ] = H [Y jX ]. We mark
prescient states (and setsof states, etc.) by putting a hat over the variables names: bR ; bR; b� , etc.

We now establish a link between prescienceand the statistical notion of \su�ciency" (explained in
Appendix A.5).

Lemma 2 (Prescien t States Are Su�cien t Statistics) If bR is a prescientclassof e�ective states,then
bR is a su�cient statistic for predicting Y , and vice versa.

Proof. By the de�nition of mutual information, I (Y ; bR) = H [Y ] � H [Y j bR ]. But, by the de�nition of
prescient states,H [Y j bR] = H [Y jX ]. SoI (Y ; bR) = H [Y ]� H [Y jX ] = I (Y ; X ). Soby Proposition 6, prescient
states are su�cien t statistics. Essentially the samereasoningrun in reverseprovesthe conversepart of the
theorem. QED.

3.2.1 Minimalit y and Prediction

Let's invoke Occam's Razor: \It is vain to do with more what can be done with less" (Ockham 1964). To
usethe razor, we needto �x what is to be \done" and what \more" and \less" mean. The job we want done
is accurateprediction, reducing the conditional entropies H [Y jR ] as far as possible,the goal being to attain
the bound set by Lemma 1, with a prescient set of states. But we want to do this assimply aspossible,with
as few resourcesas possible. We already have a measureof uncertainty, so we needa measureof resources.
Sincethere is a probabilit y measureover inputs, there is an induced measureon the � -states.3 Accordingly,
we de�ne the following measureof complexity.

De�nition 4 (Statistical Complexit y of States) The statistical complexity of a classR of states is

C� (R ) � H [R] : (3.2)

The � in C� reminds us that it is a measure-theoreticproperty and dependsultimately on the distribution
over the inputs, which inducesa measureover states.

The statistical complexity of a state classis the averageuncertainty (in bits) in the transducer's current
state. This, in turn, is the sameas the averageamount of memory (in bits) that the transducer appears

3This assumes� is at least nearly measurable. SeeApp endix B.3.2.2.
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to retain about the input, given the chosenstate classR . (We will later seehow to de�ne the statistical
complexity of the transducer itself.) The goal is to do with as little of this memory as possible. Restated
then, we want to minimize statistical complexity, subject to the constraint of maximally accurateprediction.

The idea behind calling the collection of all partitions of X Occam'spool should now be clear: One wants
to �nd the shallowest point in the pool. This we now do.

3.3 Causal States

De�nition 5 (Causal State for Memoryless Transduction) The causalstateare the rangeof the func-
tion

� (x) = f x0jP(Y jX = x) = P(Y jX = x0)g : (3.3)

If � (x) = � (x0), then P(Y jX = x) = P(Y jX = x0), and we write x� � x0. We denote the classof causal states
by S, the random variable for the current causal state by S, and a particular causal state by � .

Each causalstate � hasa unique associated distribution of outputs P(Y = yjS = � ), called its morph. In
generalevery e�ective state has a morph, but two e�ectiv e states in the samestate classmay very well have
the samemorph. Moreover, the causal states have the important property that all of their parts have the
samemorph. We make this notion a little more precisein the following de�nitions, which build to important
results later on, especially the crucial Re�nement Lemma (Lemma 4).

3.3.1 Homogeneit y

The following de�nitions are inspired by Salmon (1984).

De�nition 6 (Strict Homogeneit y) A set X is strictly homogeneouswith respect to a random variable
Y when the conditional distribution for Y , P(Y jX ), is the samefor all measurable subsetsof X .

De�nition 7 (W eak Homogeneit y) A set X is weakly homogeneouswith respect to Y if X is not strictly
homogeneous with respect to Y , but X n X 0 (X with X 0 removed) is, where X 0 is a subsetof X of measure
0.

Lemma 3 (Strict Homogeneit y of Causal States) A process's causal states are the largest subsetsof
inputs that are all strictly homogeneous with respect to the output.

Proof. We must show that, �rst, the causalstates are strictly homogeneouswith respect to output and,
second, that no larger strictly homogeneoussubsetsof inputs could be made. The �rst point, the strict
homogeneity of the causalstates, is evident from De�nition 5: By construction, all elements of a causalstate
have the sameconditional distribution for the output, so any part of a causalstate will have the conditional
distribution as the whole state. The secondpoint likewisefollows from De�nition 5, since the causal state
contains all the inputs with a given conditional distribution of output. Any other set strictly homogeneous
with respect to output must be smaller than a causal state, and any set that includes a causal state as a
proper subsetcannot be strictly homogeneous.QED.

3.3.2 Optimalities and Uniqueness

Let's seewhat the causalstates are good for. Let's start by seeinghow well we can predict the output from
knowing the causalstate.

Theorem 1 (Prescience and Su�ciency of Causal States) The causal states S are prescient, and
su�cient statistics.
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Proof. It is clear that P(Y = yjS = � (x)) = P(Y = yjX = x), for all x; y. Thus, by De�nition 66, the
causalstates are su�cien t statistics for predicting the output, and so, by Lemma 2, they are prescient.

Lemma 4 (Re�nemen t Lemma) For all prescient rivals bR and for each b� 2 bR , there is a � 2 S and a
measure-0 subsetb� 0 � b� , possiblyempty, such that b� n b� 0 � � .

Proof. Weinvokea straightforward extensionof Theorem2.7.3of Cover and Thomas(1991): If X 1; X 2; : : :
X n are random variables over the same set A , each with distinct probabilit y distributions, � a random
variable over the integers from 1 to n such that P(� = i ) = � i , and Z a random variable over A such that
Z = X � , then

H [Z ] = H

"
nX

i =1

� i X i

#

�
nX

i =1

� i H [X i ] : (3.4)

In words, the entropy of a mixture of distributions is at least the meanof the entropies of thosedistributions.
This follows since H is strictly concave, which in turn follows from x logx being strictly convex for x � 0.
We obtain equality in Eq. 3.4 if and only if all the � i are either 0 or 1, i.e., if and only if Z is at least weakly
homogeneous(De�nition 7).

The conditional distribution of outputs for each rival state � can be written as a weighted mixture of the
distributions of one or more causalstates. Thus, by Eq. 3.4, unlessevery � is at least weakly homogeneous
with respect to outputs, the entropy of Y conditioned on R will be higher than the minimum, the entropy
conditioned on S. So, in the caseof the maximally predictive bR, every b� 2 bR must be at least weakly
homogeneouswith respect to Y . But the causalstates are the largest classesthat are strictly homogeneous
with respect to Y (Lemma 7). Thus, the strictly homogeneouspart of each b� 2 bR must be a subclass,
possibly improper, of somecausalstate � 2 S. QED.

Remark 1. One can provide a more elaborately algebraic and lessverbal proof of this Lemma. We do
this for the caseof time seriesin Appendix B.4, but the reader may easily adapt the argument there to this
simpler case.

Remark 2. The content of the lemma can be madequite intuitiv e, if we ignore for a moment the measure-
0 set b� 0 of inputs mentioned in its statement. It then assertsthat any alternativ e partition bR that is as
prescient as the causal states must be a re�nement of the causal-statepartition. That is, each bR i must be
a (possibly improper) subsetof someSj . Otherwise, at least one bR i would have to contain parts of at least
two causalstates. And so, using this bR i to predict the output would lead to more uncertainty about Y than
using the causalstates.

Adding the measure-0set b� 0 of inputs to this picture doesnot changeits heuristic content much. Precisely
becausethese inputs have zero probabilit y, treating them in the wrong way makesno discernible di�erence
to predictions, morphs, and so on. There is a problem of terminology, however, since there seemsto be no
standard name for the relationship between the partitions bR and S. We proposeto say that the former is
a re�nement of the latter almost everywhere or, simply, a re�nement a.e.

Remark 3. One cannot work the proof the other way around to show that the causal states have to
be a re�nement of the equally prescient bR-states. This is becausethe theorem borrowed from Cover and
Thomas (1991), Eq. 3.4 only applies when we can reduceuncertainty by specifying from which distribution
onechooses.Sincethe causalstatesare constructed soas to be strictly homogeneouswith respect to futures,
this is not the case.Lemma 3 and Theorem 1 together protect us.

Remark 4. Becausealmost all of each prescient rival state is wholly contained within a single causal
state, we can construct a function g : bR 7! S, such that, if � (x) = b� , then � (x) = g(b� ) almost always.
We can even say that S = g( bR) almost always, with the understanding that this meansthat, for each b� ,
P(S = g(b� )j bR = b� ) = 1.
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Theorem 2 (Minimalit y of Causal States) For any prescient state class bR ,

C� ( bR ) � C� (S) : (3.5)

Proof. By Lemma 4, Remark 4, there is a function g such that S = g( bR) almost always. But H [f (X )] �
H [X ] (Eq. A.22) and so

H [S] = H [g( bR)] � H [ bR] : (3.6)

but C� ( bR ) = H [ bR] (De�nition 4). QED.
Remark. If the distribution over inputs P(X ) changes,but, for each x, but the conditional distribution

of outputs P(Y jX = x) does not, the causal states also do not change. In general, the numerical value of
the statistical complexity of the causalstates wil l change, but their minimalit y among the prescient states
will not.

Corollary 1 (Causal States Are Minimal Su�cien t) The causal states are minimal su�cient statis-
tics for predicting the output.

Proof. We saw in the proof of Theorem 2 how to construct a function from any prescient state classto
the causalstates. From Lemma 2, the prescient state classesconsistof all and only the predictively su�cien t
statistics. Therefore, the causal states are functions of all the su�cien t statistics, and so by De�nition 67,
they are the minimal su�cien t statistics.

Theorem 3 (The Causal States Are Unique) For all prescientrivals bR , if C� ( bR ) = C� (S), then there
exists an invertible function between bR and S that almost always preservesequivalence of state: bR and �
are the sameas S and � , respectively, except on a set of inputs of measure 0.

Proof. From Lemma 4, we know that S = g( bR) almost always. We now show that there is a function f
such that bR = f (S) almost always, implying that g = f � 1 and that f is the desired relation between the
two setsof states. To do this, by Eq. A.23 it is su�cien t to show that H [ bR jS] = 0. Now, it follows from an
information-theoretic identit y (Eq. A.19) that

H [S] � H [Sj bR] = H [ bR] � H [ bRjS ] : (3.7)

Since,by Lemma 4 H [Sj bR ] = 0, both sidesof Eq. 3.7 are equal to H [S]. But, by hypothesis,H [ bR] = H [S].
Thus, H [ bRjS ] = 0 and so there exists an f such that bR = f (S) almost always. We have then that
f (g( bR)) = bR and g(f (S)) = S, so g = f � 1. This implies that f preserves equivalence of states almost
always: for almost all x; x0 2 X , � (x) = � (x0) if and only if � (x) = � (x0). QED.

Remark. As in the caseof the Re�nement Lemma 4, on which the theorem is based, the measure-0
caveats seemunavoidable. A rival that is as predictive and as simple (in the senseof De�nition 4) as the
causalstates, can assigna measure-0set of inputs to di�eren t states than � does,but no more. This makes
sense:such a measure-0set makesno di�erence, sinceits members are never observed, by de�nition. By the
sametoken, however, nothing prevents a minimal, prescient rival from disagreeingwith the causalstates on
those inputs.

De�nition 8 (Statistical Complexit y of Memoryless Transduction) The statistical complexity of a
transduction process, written simply C� , is equal to the statistical complexity of its causal states, C� (S) =
H [S].

Remark. This de�nition is motivated by the minimal statistical complexity of the causalstates, and by
their uniqueness.



21

Theorem 4 (Con trol Theorem for Memoryless Transduction) For any set of e�ective statesR , the
reduction in the uncertainty of the outputs, conditional on knowing the e�ective state, H [Y ] � H [Y jR ], is at
most C� .

Proof. This one, honestly, is simple.

H [Y ] � H [Y jR ] � H [Y ] � H [Y jS] (3.8)

= I (Y ; S) (3.9)

= H [S] � H [SjY ] (3.10)

� H [S] = C� (3.11)

QED.
Remark. This result is inspired by, and is a version of, Ashby's \La w of Requisite Variety" (Ashby 1956,

ch. 11), which states that applying a controller can reduce the uncertainty in the controlled variable by at
most the entropy of the control variable. (Touchette and Lloyd (1999) recently restated this result, without
credit to Ashby.) Our control theorem is a statement about the degreeof control we can exert over the
output by �xing the input, and so the causalstate. Note that the inequality will be saturated if H [SjY ] = 0,
which will be the caseif each output is due to a unique causalstate. Sincethis can't be ruled out a priori ,
we cannot, in general,sharpen the upper bound any further.

3.4 Other Approac hes to Memoryless Transduction

This is, of course, a very old, very general and very important problem. In recent years a wide array of
methods have arisen for tackling it. We consider here three which are particularly akin to computational
mechanics.

3.4.1 Graphical Mo dels

Someof the most widely applied methods for this problem are thosethat travel under the label of \graphical
models" (Loehlin 1992; Lauritzen 1996; Pearl 2000; Spirtes, Glymour and Scheines2001). These involve
representing the input and the output asa number of distinct variables(onefor each quantit y wecanmeasure,
essentially), and positing a number of hidden or \laten t" variables in between. Each variable, manifest or
latent, is represented by a node in a graph. A directed edgeruns from variable A to variable B if and only
if A is a direct causeof B . Assuming that what's called the \causal Markov condition" is met4 and some
other, more technical requirements are satis�ed, reliable techniquesexist for inferring which variables cause
which, and through what intermediate, latent variables.

While thesemethods are ideologically akin to computational mechanics (Spirtes, Glymour and Scheines
(2001) in particular), they are not quite the same. In particular, they do not seekto directly partition the
spaceof inputs X into the divisions which are relevant to the output; at best this is implicit in the structure
of connectionsbetween the manifest inputs and the latent variables. Moreover, mathematical tractabilit y
generallyrestricts practitioners to fairly simple forms of dependencebetweenvariables,often evento linearit y.
Our method doesnot labor under theserestrictions. It beginsdirectly with a partition of the input space,
to which everything is referred. In e�ect, the computational mechanics approach is to always construct a
graph with only three variables, the input, the causal state, and the output, connectedin that order. The
work comesin constructing the middle part!

4Consider any variable A in the graph G . Write the set of variables which are direct causesof A as C (A). Write the set
of variables which are e�ects of A , whether direct or indirect, as E(A), i.e., B 2 E(A) if and only if there is a path from A to
B . Finally , let N (A) = G n (C (A) [ E (A)). Then the causal Mark ov condition is that A is conditionally independent of all
variables in N (A) given C (A), that A j= N (A)jC (A).
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3.4.2 The Information-Bottlenec k Metho d

Tishby, Pereira and Bialek (1999) posesthe following problem. Given a joint distribution over the input X
and the output Y , �nd an intermediate or \b ottleneck" variable ~X which is a (possibly stochastic) function
of X such that ~X is more compressedthan X , but retains predictive information about Y . More exactly,
they ask for a conditional distribution P( ~X = ~xjX = x) that minimizes the functional

F = I ( ~X ; X ) � � I ( ~X ; Y ) ; (3.12)

where � is a positive real number. Minimizing the �rst term represents the desire to �nd a compressionof
the original input data X ; maximizing the secondterm represents the desire to retain the abilit y to predict
Y .5 The coe�cien t � governs the trade-o� betweenthesetwo goals: as � ! 0, we loseinterest in prediction
in favor of compression;whereasas � ! 1 , predictive abilit y becomesparamount.

Extending classicalrate-distortion theory, the authors are not only able to state self-consistent equations
that determine which distributions satisfy this variational problem, but give a convergent iterativ e procedure
that �nds one of thesedistributions. They do not addressthe rate of convergence.

Now, I (Y ; ~X ) = H [Y ] � H [Y j ~X ]. Since H [Y ] is �xed, maximizing I (Y ; ~X ) is the sameas minimizing
H [Y j ~X ]. That is, to maximize the predictive information, the bottleneck variable should be prescient. But
the most compressedprescient states | the oneswith the smallest entropy | are the causalstates. Thus,
they are preciselywhat should be deliveredby the information-b ottleneck method in the limit where� ! 1 .
It is not immediately obvious that the iterativ e procedureof Tishby, Pereira and Bialek (1999) is still valid
in this limit. Nonetheless,that � is the partition satisfying their original constraints is evident.

We note in passing that Tishby, Pereira and Bialek (1999) assert that, when su�cien t statistics exist,
then compression-with-prediction is possible. Conversely, we have shown that the causal states are always
su�cien t statistics.

3.4.3 The Statistical Relev ance Basis

Here is one last solution to the problem of discovering conciseand predictive hidden variables. In his books
of 1971 and 1984, WesleySalmon put forward a construction, under the name of the \statistical relevance
basis", that is identical in its essentials with that of causalstates for memorylesstransducers.6 Owing to the
rather di�eren t aims for which Salmon'sconstruction was intended | explicating the notion of \causation"
in the philosophy of science| no one seemsto have proved its information-theoretic optimalit y properties
nor even to have noted its connection to su�cien t statistics. Brie
y: if a nontrivial su�cien t partition of the
input variables exists, then the relevancebasis is the minimal su�cien t partition.

3.5 Summary

Let's recap what we've done in this chapter, since we're going to be going through a similar exerciseover
and over again.

We start with onevariable (or set of variables) which causes,in somestatistical fashion, another variable.
We want to predict the output, given the input, as accurately and as simply as possible. We summarizethe
input in an e�ectiv e state, and measurepredictive power by the entropy of the output conditional on the
e�ectiv e state, and the complexity of the predictor by the entropy of the e�ectiv e state, i.e., the amount of
information the state retains from the input. The predictive power of e�ectiv e states is limited by that of
the original input; states which attain this limit are prescient. Our goal is to minimize complexity, subject
to the constraint of prescience.

5Since ~X = g(X ; 
) for some auxiliary random variable 
, a theorem of Shannon's assuresus that I ( ~X ; Y ) � I (X ; Y ) and
the transformation from X to ~X cannot incr ease our abilit y to predict Y (Shannon 1948, App. 7).

6 I discovered Salmon's work by accident in May 1998, browsing in a used book store, so it's not cited in computational
mechanics papers up to and including Crutc h�eld and Shalizi (1999).



23

We intro duce a particular partition of the inputs, the causalstates, which treats inputs as equivalent if
they lead to the sameconditional distribution of outputs. This is prescient, sincethe distribution of outputs
conditional on the causalstate is, by construction, the sameas that conditional on the input. We then use
homogeneity to prove a re�nement lemma, telling us that any prescient rival to the causalstates must be a
re�nement of them almost everywhere. The re�nement lemma, in turn, leadsdirectly to the result that the
causalstates are the minimal prescient states, and to the uniquenessof the causalstates.

The bulk of the work in the rest of this book will be setting up these sametric ks for processeswhich
are more subtle than memorylesstransduction, and examining the extra implications for the causal states
of those subtleties. We start with time series.
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Chapter 4

Computational Mec hanics of Time
Series

The next chapter is devoted to the statistical mechanics of time series. This is another �eld
in which conditions are very remote from those of the statistical mechanics of heat enginesand
which is thus very well suited to serve as a model of what happensin the living organism.
|Norb ert Wiener (1961, p. 59)

4.1 Paddling Around in Occam's Pool

4.1.1 Pro cesses

Let's restrict ourselves to discrete-valued, discrete-time stationary stochastic processes.(SeeSection 11.4
for ways in which these restrictions might be lifted.) Intuitiv ely, such processesare sequencesof random
variables Si , the valuesof which are drawn from a countable set A . We let i range over all the integers,and
so get a bi-in�nite sequence

$
S= : : : S� 1S0S1 : : : : (4.1)

In fact, we can de�ne a processin terms of the distribution of such sequences(cf. Billingsley 1965; Gray
1990).

De�nition 9 (A Pro cess) Let A be a countableset. Let 
 = A
�

be the setof bi-in�nite sequencescomposed
from A, Ti : 
 7! A be the measurable function that returns the i th element si of a bi-in�nite sequence
! 2 
 , and F the � -algebra of cylinder sets of 
 . Adding a probability measure P gives us a probability

space (
 ; F ; P), with an associated random variable
$
S. A processis a sequence of random variables Si =

Ti (
$
S); i 2

�

.

It followsfrom De�nition 9 that there arewell de�ned probabilit y distributions for sequencesof every �nite

length. Let
!
S

L

t be the sequenceof St ; St +1 ; : : : ; St + L � 1 of L random variables beginning at St .
!
S

0

t � ; , the

null sequence.Likewise,
 
S

L

t denotesthe sequenceof L random variables going up to St , but not including

it;
 
S

L

t =
!
S

L

t � L . Both
!
S

L

t and
 
S

L

t take values from sL 2 A L . Similarly,
!
S t and

 
S t are the semi-in�nite

sequencesstarting from and stopping at t and taking values
!
s and

 
s , respectively.

Intuitiv ely, we can imagine starting with distributions for �nite-length sequencesand extending them
gradually in both directions, until the in�nite sequenceis reached as a limit. While this can be a useful
picture to have in mind, de�ning a processin this way raises some subtle measure-theoretic issues,such
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as how distributions over �nite-length sequenceslimit on the in�nite-length distribution. To evade these
questions,we start with the latter, and obtain the former by \marginalization". (The �rst chapter of Gray
(1990) has a particularly clear exposition of this approach.)

De�nition 10 (Stationarit y) A processSi is stationary if and only if

P(
!
S

L

t = sL ) = P(
!
S

L

0 = sL ) ; (4.2)

for all t 2
�

, L 2
� + , and all sL 2 A L .

In other words, a stationary processis one that is time-translation invariant. Consequently , P(
!
St =

!
s ) =

P(
!
S0=

!
s ) and P(

 
S t =

 
s ) = P(

 
S0=

 
s ), and so I'll drop the subscripts from now on.

I'll call
 
S and

 
S

L
pasts or histories and

!
S and

!
S

L
, futures. I'll needto refer to the classof all measurable

setsof histories; this will be � (
 
S)1 Similarly, the classof all measurablesetsof futures is � (

!
S). It is readily

checked (Upper 1997) that � (
 
S) =

S 1
L =1 � (

 
S

L
), and likewisefor � (

!
S).

This is a good place to note that strict stationarit y, as de�ned above, is actually a stronger property

than this chapter needs. All we really require is that P(
!
S t 2 F j

 
S t =

 
s ) = P(

!
S02 F j

 
S0=

 
s ), for all t and

for all F 2 � (
!
S). This property, of time-invariant transition probabilities, should I guessbe named some

form of \homogeneity," by analogy with the corresponding property for Markov processes,but that name is
pre-empted. So let's call this conditional stationarity instead.

4.1.2 The Pool

Our goal is to predict all or part of
!
S using somefunction of somepart of

 
S. As before, let's start with

e�ectiv e states, and classesof e�ectiv e states.

De�nition 11 (E�ectiv e States) A partition of
 
S is an e�ectiv e state class. Each � 2 R wil l be called

a state or an e�ectiv e state. When the current history
 
s is included in the set � , the processis in state � .

De�ne a function � from histories to e�ective states:

� :
 
S 7! R : (4.3)

A speci�c individual history
 
s 2

 
S maps to a speci�c state � 2 R ; the random variable

 
S for the past maps

to the random variable R for the e�ective states.

It makeslittle di�erence whether onethinks of � asbeing a function from a history to a subsetof histories
or a function from a history to the label of that subset. Each interpretation is convenient at di�eren t times,
and I'll useboth.

We could useany function de�ned on
 
S to partition that set, by assigningto the same� all the histories

 
s on which the function takes the samevalue. Similarly, any equivalencerelation on

 
S partitions it. (See

Appendix A.1 for more on equivalencerelations.) Due to the way I de�ned a process'sdistribution, each
e�ectiv e state hasa well-de�ned distribution of futures2, though other statescould have the sameconditional
distribution. Specifying the e�ectiv e state thus amounts to making a prediction about the process'sfuture.
All the histories belonging to a given e�ectiv e state are treated as equivalent for purposesof predicting the
future. (In this way, the framework formally incorporates traditional methods of time-series analysis; see
Section 6.1.)

The de�nition of statistical complexity, De�nition 4, applies unchangedto time seriese�ectiv e states.

Call the collection of all partitions R of the set of histories
 
S Occam's pool.

1Conventionally , this ought to be � (
 
S ), but, as the reader will see, that notation would be confusing later on.

2This is not true if � is not at least nearly measurable (see App endix B.3.2.2). To paraphrase Schutz (1980), you should
assume that all my e�ectiv e-state functions are su�cien tly tame, measure-theoretically , that whatever induced distributions I
invoke will exist.
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1R

3R

2R

S
¬

4R

Figure 4.1: A schematic picture of a partition of the set
 
S of all histories into someclassof e�ectiv e states:

R = fR i : i = 1; 2; 3; 4g. Note that the R i neednot form compact sets; they're drawn that way for clarit y.
Imagine Cantor setsor other, more pathological, structures.

4.1.3 Patterns in Ensembles

It will be convenient to have a way of talking about the uncertainty of the future. Intuitiv ely, this would

just be H [
!
S], but in generalthat quantit y is in�nite and awkward to manipulate. (The special casein which

H [
!
S] is �nite is dealt with in Appendix B.5.) Normally, I'll evadethis by consideringH [

!
S

L
], the uncertainty

of the next L symbols, treated asa function of L . On occasion,I'll refer to the entropy per symbol or entropy
rate (Shannon 1948;Cover and Thomas 1991):

h[
!
S] � lim

L !1

1
L

H [
!
S

L
] ; (4.4)

and the conditional entropy rate,

h[
!
S jX ] � lim

L !1

1
L

H [
!
S

L
jX ] ; (4.5)

where X is somerandom variable and the limits exist. For stationary stochastic processes,the limits always
exist (Cover and Thomas 1991,Theorem 4.2.1, p. 64).

Theseentropy ratesarealsoalways boundedaboveby H [S]; which is a special caseof Eq. A.14. Moreover,

if h[
!
S] = H [S], the processconsistsof independent variables | independent, identically distributed (I ID)

variables, in fact, for stationary processes.

De�nition 12 (Capturing a Pattern) R captures a pattern if and only if there exists an L such that

H [
!
S

L
jR ] < LH [S] : (4.6)

This says that R captures a pattern when it tells us something about how the distinguishable parts of a
processa�ect each other: R exhibits their dependence. (I'll also speak of � , the function associated with
pasts, as capturing a pattern, since this is implied by R capturing a pattern.) Supposing that these parts
do not a�ect each other, then we have I ID random variables, which is as close to the intuitiv e notion of
\patternless" as one is likely to state mathematically. Note that, becauseof the independencebound on
joint entropies (Eq. A.14), if the inequality is satis�ed for someL , it is also satis�ed for every L 0 > L . Thus,

the di�erence H [S] � H [
!
S

L
jR ]=L, for the smallest L for which it is nonzero, is the strength of the pattern

captured by R . Let's now mark an upper bound (Lemma 5) on the strength of patterns; later we'll seehow
to attain this upper bound (Theorem 5).
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4.1.4 The Lessons of History

We are now in a position to prove a result about patterns in ensembles that will be useful in connectionwith
later theoremsabout causalstates.

Lemma 5 (Old Coun try Lemma) For all R and for all L 2
� + ,

H [
!
S

L
jR ] � H [

!
S

L
j

 
S] : (4.7)

Proof. By construction (Eq. 4.3), for all L ,

H [
!
S

L
jR ] = H [

!
S

L
j� (

 
S)] : (4.8)

But

H [
!
S

L
j� (

 
S)] � H [

!
S

L
j

 
S] ; (4.9)

sincethe entropy conditioned on a variable is never more than the entropy conditioned on a function of the
variable (Eq. A.25). QED.

Remark 1. That is, conditioning on the whole of the past reducesthe uncertainty in the future to assmall
a value aspossible. Carrying around the whole semi-in�nite past is rather bulky and uncomfortable and is a
somewhatdismaying prospect. Put a bit di�eren tly: we want to forget as much of the past as possibleand
so reduce its burden. It is the contrast between this desire and the result of Eq. 4.7 that leads me to call
this the Old Country Lemma.

Remark 2. Lemma 5 establishesthe promisedupper bound on the strength of patterns: viz., the strength

of the pattern is at most H [S] � H [
!
S

L
j

 
S]=Lpast , where L past is the least value of L such that H [

!
S

L
j

 
S] <

LH [S].

4.2 The Causal States

Here I'm going to de�ne the causal states for stochastic processes,very much as I did in the last chapter
for memorylesstransducers. As was the casethere, the de�nitions and constructions in this section use
conditional probabilities over and over again. That's �ne so long as I condition on events of nonzeroprob-
abilit y. However, I need to condition on events, such as particular histories, whoseprobabilit y generally is
zero. There are standard ways of dealing with this, but their technicalities tend to obscurethe main lines
of the argument. To keep those lines as clear as possible, in this section I state my de�nitions as though
classicalconditional probabilit y wasadequate,reservingthe measure-theoretictreatment, and its limitations
and caveats, for Appendix B.3. The proofs are compatible with the proper useof conditional measures,but
they should be intelligible without them.

De�nition 13 (A Pro cess's Causal States) The causalstates of a processare the members of the range
of the function � that maps from histories to setsof histories:

� (
 
s ) � f

 
s

0
jP(

!
S2 F j

 
S=

 
s ) = P(

!
S2 F j

 
S=

 
s

0
) ; 8 F 2 � (

!
S);

 
s

0
2

 
Sg ; (4.10)

where � (
!
S) is the collection of all measurable future events. Write the i th causal state as � i and the set of

all causal statesas S; the corresponding random variable is denoted S, and its realization � .
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The cardinalit y and topology of S are unspeci�ed. S can be �nite, countably in�nite, a continuum, a
Cantor set, or somethingstranger still. Examplesof theseare given in Crutch�eld (1994a)and Upper (1997);
seeespecially the examplesfor hidden Markov models given there.

Alternately and equivalently , I could de�ne an equivalencerelation � � such that two histories are equiv-
alent if and only if they have the sameconditional distribution of futures, and then de�ne causalstates as
the equivalenceclassesgeneratedby � � . (In fact, this was the original approach (Crutc h�eld and Young

1989).) Either way, the divisions of this partition of
 
S are made betweenregions that leave us in di�eren t

conditions of ignoranceabout the future.
This last statement suggestsanother, still equivalent, description of � :

� (
 
s ) = f

 
s

0
jP(

!
S

L
=

!
s

L
j

 
S=

 
s ) = P(

!
S

L
=

!
s

L
j

 
S=

 
s

0
) ; 8

!
s

L
2

!
S

L
;

 
s

0
2

 
S ; L 2

� + g : (4.11)

Using this we can make the original de�nition, Eq. 4.10, more intuitiv e by picturing a sequenceof partitions

of the space
 
S of all histories in which each new partition, induced using futures of length L + 1, is a

re�nement of the previous one induced using L . At the coarsestlevel, the �rst partition (L = 1) groups
together those histories that have the samedistribution for the very next observable. Theseclassesare then
subdivided using the distribution of the next two observables,then the next three, four, and soon. The limit
of this sequenceof partitions | the point at which every member of each classhas the samedistribution of

futures, of whatever length, as every other member of that class| is the partition of
 
S induced by � � .

Although they will not be of direct concern in the following, due to the time-asymptotic limits taken,
there are transient causal states in addition to those (recurrent) causal states de�ned above in Eq. 4.10.
Roughly speaking, the transient causal states describe how a lengthening sequenceof observations allows
us to identify the recurrent causal states with increasing precision. SeeUpper (1997) and Feldman and
Crutch�eld (1998a) for details on transient causalstates.

Causalstatesare a particular kind of e�ectiv e state, and they have all the properties commonto e�ectiv e
states (Section 4.1.2). In particular, each causalstate Si has several structures attached:

1. The index i | the state's \name".

2. The set of histories that have brought the processto Si , f
 
s 2 Si g.

3. A conditional distribution over futures, denoted P(
!
S jSi ) and equal to P(

!
S j

 
s );

 
s 2 Si . Since I refer

to this type of distribution frequently and since it is the \shape of the future", I'll call it the state's
morph, following Crutch�eld and Young (1989).

Ideally, each of theseshould be denotedby a di�eren t symbol, and there should be distinct functions linking
each of thesestructures to their causalstate. To keepthe growth of notation under control, however, I'll be
tactically vagueabout thesedistinctions. Readersmay variously picture � as mapping histories to (i) simple
indices, (ii) subsetsof histories, (iii) distributions over futures or (iv) ordered triples of indices, subsets,and
morphs; or one may even leave � uninterpreted, as preferred, without interfering with the development that
follows.

4.2.1 Morphs

Each causal state has a unique morph, i.e., no two causal states have the sameconditional distribution of
futures. This follows directly from De�nition 13, and it is not true of e�ectiv e states in general. Another
immediate consequenceof that de�nition is that, for any measurablefuture event F ,

P(
!
S2 F jS = � (

 
s )) = P(

!
S2 F j

 
S=

 
s ): (4.12)

(Again, this is not generally true of e�ectiv e states.) This observation lets us prove a useful lemma about

the conditional independenceof the past
 
S and the future

!
S.
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Figure 4.2: A schematic representation of the partitioning of the set
 
S of all histories into causal states

Si 2 S. Within each causalstate all the individual histories
 
s have the samemorph | the sameconditional

distribution P(
!
S j

 
s ) for future observables.

Lemma 6 The past and the future are independent, conditioning on the causal states:
 
S j=

!
S jS.

Proof. By Proposition 9 of Appendix B.3,
 
S and

!
S are independent given S if and only if, for any

measurableset F of futures, P(
!
S2 F j

 
S=

 
s ; S = � ) = P(

!
S2 F jS = � ). Since S = � (

 
S), it is automat-

ically true (Eq. B.6) that P(
!
S2 F j

 
S=

 
s ; S = � (

 
s )) = P(

!
S2 F j

 
S=

 
s ). But then, P(

!
S2 F j

 
S=

 
s ) =

P(
!
S2 F jS = � (

 
s )), so P(

!
S2 F j

 
S=

 
s ; S = � ) = P(

!
S2 F jS = � ). QED.

Lemma 7 (Strict Homogeneit y of Causal States) A process's causal states are the largest subsetsof
histories that are all strictly homogeneous with respect to futures of all lengths.

The proof is identical to that for memorylesstransducers(Lemma 3).

4.2.2 Causal State-to-State Transitions

The causal state at any given time and the next value of the observed processtogether determine a new
causalstate; this is proved shortly in Lemma 10. Thus, there is a natural relation of successionamong the
causalstates; recall the discussionof causality in Section 2.3.4. Moreover, given the current causalstate, all

the possiblenext values of the observed sequence(
!
S

1
) have well de�ned conditional probabilities. In fact,

by construction the entire semi-in�nite future (
!
S) does. Thus, there is a well de�ned probabilit y T (s)

ij of the
processgenerating the value s 2 A and going to causalstate Sj , if it is in state Si .

De�nition 14 (Causal Transitions) The labeled transition probability T (s)
ij is the probability of making

the transition from state Si to state Sj while emitting the symbol s 2 A:

T (s)
ij � P(S0 = Sj ;

!
S

1
= sjS = Si ) ; (4.13)

where S is the current causalstate and S0 its successor.Denote the set f T (s)
ij : s 2 Ag by T .

Lemma 8 (T ransition Probabilities) T (s)
ij is given by

T (s)
ij = P(

 
S s 2 Sj j

 
S2 Si ) ; (4.14)
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where
 
S s is read as the semi-in�nite sequence obtained by concatenating s 2 A onto the end of

 
S.

Proof. It's enoughto show that the events concernedare really the same. That is, I want to show that
�

S0 = Sj ;
!
S

1
= s; S = Si

�
=

n  
S s 2 Sj ;

 
S2 S

o
:

Now, that S = Si and
 
S2 Si are the sameevent is clear by construction. So, too, for

 
S

0
2 Sj and S0 = Sj .

So I can certainly assert that
�

S0 = Sj ;
!
S

1
= s; S = Si

�
=

�
 
S

0
2 Sj ;

!
S

1
= s;

 
S2 Si

�
:

The conjunction of the �rst and third events implies that, for all
 
s , if

 
S=

 
s , then

 
S

0
=

 
sa, for somesymbol

a 2 A. But the middle event ensuresthat a = s. Hence,
�

S0 = Sj ;
!
S

1
= s; S = Si

�
=

�
 
S s 2 Sj ;

!
S

1
= s;

 
S2 Si

�
:

But now the middle event is redundant and can be dropped. Thus,
�

S0 = Sj ;
!
S

1
= s; S = Si

�
=

n  
S s 2 Sj ;

 
S2 Si

o
;

aspromised. Sincethe events have the sameprobabilit y, when conditioned on S, the events
n  

S s 2 Sj

o
and

�
S0 = Sj ;

!
S

1
= s

�
will yield the sameconditional probabilit y.3 QED.

Notice that T ( ; )
ij = � ij ; that is, the transition labeled by the null symbol ; is the identit y.

4.2.3 � -Mac hines

The combination of the function � from histories to causal states with the labeled transition probabilities
T (s)

ij is called the � -machine of the process(Crutc h�eld 1994a;Crutch�eld and Young 1989).

De�nition 15 (An � -Mac hine De�ned) The � -machine of a process is the ordered pair f �; T g, where �
is the causal state function and T is set of the transition matrices for the states de�ned by � .

Equivalently , you can denote an � -machine by f S; T g.
I promisedthat computational mechanicswould be \algebraic" back in Section2.3.5,sohereis an explicit

connection with semi-grouptheory, and can you get more algebraic?

Lemma 9 ( � -Mac hines Are Monoids) The algebra generated by the � -machine f �; T g is a monoid | a
semi-group with an identity element.

Proof. SeeAppendix B.2.
Remark. Due to this, � -machines can be interpreted as capturing a process'sgeneralized symmetries.

Any subgroupsof an � -machine's semi-groupare, in fact, symmetries in the usual sense.

Lemma 10 ( � -Mac hines Are Deterministic) For each Si 2 S and each s 2 A, there is at most one
Sj 2 S such that, for every history

 
s 2 Si , the history

 
ss 2 Sj . If such a Sj exists, then for all other

Sk 2 S, T (s)
ik = 0. If there is no such Sj , then T (s)

ik = 0 for all Sk 2 S whatsoever. That is, the � -machine is
deterministic in the senseof De�nition 59.

3Technically , they will yield versions of the sameconditional probabilit y, i.e., they will agreewith probabilit y 1. SeeApp endix
B.3.
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Proof. The �rst part of the lemma asserts that for all s 2 A and
 
s ;

 
s

0
2

 
S, if � (

 
s ) = � (

 
s

0
), then

� (
 
ss) = � (

 
s

0
s). (

 
ss is just another history and belongsto one or another causal state.) I'll show that this

follows directly from causalequivalence.

Consider any pair of histories
 
s ;

 
s

0
such that � (

 
s ) = � (

 
s

0
), any single symbol s, and a (measurable)set

F of future events. Let sF denote the set of futures obtained by pre�xing the symbol s to each future in F .

(sF is also measurable.) By causal equivalence,P(
!
S2 sF j

 
S=

 
s ) = P(

!
S2 sF j

 
S=

 
s

0
). Now,

!
S2 sF can

be decomposedinto the intersection of two events:
!
S

1
= s and

!
S12 F , where

!
S1 is the random variable for

the future sequence,ignoring the next symbol. Therefore, we begin with the following equalities.

P(
!
S2 sF j

 
S=

 
s ) = P(

!
S2 sF j

 
S=

 
s

0
)

P(
!
S

1
= s;

!
S12 F j

 
S=

 
s ) = P(

!
S

1
= s;

!
S12 F j

 
S=

 
s

0
)

For any three random variables X ; Y; Z , the conditional probabilit y P(Z 2 A; Y = yjX = x) can be factored
as P(Z 2 AjY = y; X = x)P(Y = yjX = x) (Eq. B.5) 4.

P(
!
S12 F j

!
S

1
= s;

 
S=

 
s )P(

!
S

1
= sj

 
S=

 
s )

= P(
!
S12 F j

!
S

1
= s;

 
S=

 
s

0
)P(

!
S

1
= sj

 
S=

 
s

0
)

From causal equivalence, the secondfactors on each side of the equation are equal, so divide through for

them. (I addressthe casewhere P(
!
S

1
= sj

 
S=

 
s ) = P(

!
S

1
= sj

 
S=

 
s

0
) = 0 below.)

P(
!
S12 F j

!
S

1
= s;

 
S=

 
s ) = P(

!
S12 F j

!
S

1
= s;

 
S=

 
s

0
)

P(
!
S2 F j

 
S=

 
ss) = P(

!
S2 F j

 
S=

 
s

0
s)

The last step is justi�ed by (conditional) stationarit y. Sincethe set F of future events is arbitrary , it follows

that
 
ss� �

 
s

0
s. Consequently , for each Si and each s, there is at most one Sj such that T (s)

ij > 0.

As remarked, causal equivalence tells us that P(
!
S

1
= sj

 
S=

 
s ) = P(

!
S

1
= sj

 
S=

 
s

0
). But they could

both be equal to zero, in which casewe can't divide through for them. But then, again as promised, it
follows that every entry in the transition matrix T (s)

ij = 0, when Si = � (
 
s ). Thus, the labeled transition

probabilities have the promised form. QED.
Remark 1. This use of \determinism" is entirely standard in automata theory (seeAppendix A.4), but

obviously is slightly confusing. Many simple stochastic processes,such asMarkov chains, are deterministic in
this sense.Indeed, somecomputer scientists are so shamelessas to say things like \sto chastic deterministic
�nite automata". Sadly, nothing can be done about this. Whenever there is a possibility of confusion
betweendeterminism in the automata-theoretic sense,and determinism in the ordinary, physical sense,I'll
call the latter \non-sto chasticity" or \non-randomness".

Remark 2. Starting from a �xed state, a given symbol always leadsto at most onesinglestate. But there
can be several transitions from one state to another, each labeled with a di�eren t symbol.

Remark 3. Clearly, if T (s)
ij > 0, then T (s)

ij = P(
!
S

1
= sjS = Si ). In automata theory the disallowed

transitions (T (s)
ij = 0) are sometimesexplicitly represented and lead to a \reject" state indicating that the

particular history doesnot occur.

Lemma 11 ( � -Mac hines Are Mark ovian) Given the causal state at time t � 1, the causal state at time
t is independent of the causal state at earlier times.

4This assumesthe regularit y of the conditional probabilities, which is valid for our discrete processes.Again, seeApp endix
B.3.
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Proof. I'll start by showing that, writing S, S0, S00 for the sequenceof causal states at three successive
times, S and S00are conditionally independent, given S0.

Let M be a (measurable)set of causalstates.

P(S00 2 MjS0 = � 0; S = � ) = P(
!
S

1
2 AjS0 = � 0; S = � ) ;

where A � A is the set of all symbols that lead from � 0 to some � 00 2 M. This is a well-de�ned and
measurableset, in virtue of Lemma 10 immediately preceding,which also guarantees(seeRemark 3 to the
Lemma) the equality of conditional probabilities I used. Invoking Lemma 7, conditioning on S hasno further
e�ect oncewe've conditioned on S0,

P(
!
S

1
2 AjS0 = � 0; S = � ) = P(

!
S

1
2 AjS0 = � 0)

= P(S002 MjS0 = � 0)

But (Proposition 9 and Eq. B.4) this is true if and only if conditional independenceholds. Now the lemma
follows by straightforward mathematical induction. QED.

Remark 1. This lemma strengthens the claim that the causalstates are, in fact, the causally e�cacious
states: given knowledge of the present state, what has gone before makes no di�erence. (Again, recall the
philosophical preliminaries of Section 2.3.4.)

Remark 2. This result indicates that the causalstates, consideredas a process,de�ne a Markov process.
Thus, causal states are a kind of generalization of hidden Markovian states. Of course, the class of � -
machines is substantially richer (Crutc h�eld 1994a; Upper 1997) than what's normally associated with
Markov processes(Kemeny and Snell 1976;Kemeny, Snell and Knapp 1976)or evenhidden Markov processes
(Elliot, Aggoun and Moore 1995). In fact, we've just shown that every conditionally stationary discrete
stochastic processhas a Markovian representation!

De�nition 16 ( � -Mac hine Reconstruction) � -Machine reconstruction is any procedure that given a pro-

cessP(
$
S) (respectively an approximation of P(

$
S)), produces the process's� -machine f S; T g (respectively an

approximation of f S; T g).

Given a mathematical description of a process,one can often calculate analytically its � -machine. (For
example, see the computational mechanics analysis of spin systems in Feldman and Crutch�eld 1998a.)

There is also a wide range of algorithms which reconstruct � -machines from empirical estimatesof P(
$
S). I

give such an algorithm in the next chapter.

4.3 Optimalities and Uniqueness, or, Wh y Causal States Are the
Funk

I now show that: causal states are maximally accurate predictors of minimal statistical complexity; they
are unique in sharing both properties; and their state-to-state transitions are minimally stochastic. In other
words, they satisfy both of the constraints borrowed from Occam, and they are the only representations
that do so. The overarching moral here is that causalstates and � -machinesare the goals in any learning or
modeling scheme. The argument is made by the time-honored meansof proving optimalit y theorems.

All the theorems,and someof the lemmas,will be establishedby comparing causalstates, generatedby
� , with other rival sets of states, generatedby other functions � . In short, none of the rival states | none
of the other patterns | can out-perform the causalstates.

It is convenient to recall somenotation beforeplunging in. Let S be the random variable for the current

causal state,
!
S

1
2 A the next \observable" we get from the original stochastic process,S0 the next causal

state, R the current state accordingto � , and R 0 the next � -state. � will stand for a particular value (causal
state) of S and � a particular value of R. When I quantify over alternativ esto the causalstates, I'll quantify
over R .
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Figure 4.3: An alternativ e classR of states (delineated by dashedlines) that partition
 
S overlaid on the

causalstates S (outlined by solid lines). Here, for example, S2 contains parts of R 1, R 2, R 3 and R 4. The
collection of all such alternativ e partitions form Occam's pool. Note again that the R i neednot be compact
nor simply connected,as drawn.

Theorem 5 (Causal States Are Prescien t) (Crutch�eld and Shalizi 1999)
For all R and all L 2

� + ,

H [
!
S

L
jR ] � H [

!
S

L
jS] : (4.15)

Proof. We have already seenthat H [
!
S

L
jR ] � H [

!
S

L
j

 
S] (Lemma 5). But by construction (De�nition

13),

P(
!
S

L
=

!
s

L
j

 
S=

 
s ) = P(

!
S

L
=

!
s

L
jS = � (

 
s )) : (4.16)

Since entropies depend only on the probabilit y distribution, H [
!
S

L
jS] = H [

!
S

L
j

 
S] for every L . Thus,

H [
!
S

L
jR ] � H [

!
S

L
jS], for all L . QED.

Remark. That is to say, causal states are as good at predicting the future | are as prescient | as
complete histories. In this, they satisfy the �rst requirement borrowed from Occam. Sincethe causalstates
are well de�ned and since they can be systematically approximated, this shows that the upper bound on
the strength of patterns (De�nition 12 and Lemma 5, Remark) can be reached. Intuitiv ely, the causalstates
achieve this because,unlike e�ectiv e states in general, they do not throw away any information about the

future which might be contained in
 
S. Even more colloquially, to paraphraseBateson's (1979) de�nition

of information, the causal states record every di�erence (about the past) that makes a di�erence (to the
future). We can actually make this intuition quite precise,in an easycorollary to the theorem.

Corollary 2 (Causal States Are Su�cien t Statistics) The causal states S of a processare su�cient
statistics for predicting it.

Proof. It follows from Theorem 5 and Eq. A.10 that, for all L 2
� + ,

I [
!
S

L
; S] = I [

!
S

L
;

 
S] ; (4.17)

where I was de�ned in Eq. A.10. Consequently , by Proposition 6, the causal states are su�cien t statistics
for futures of any length. QED.

All subsequent results concernrival states that are as prescient as the causalstates. Call theseprescient
rivals, and denote a classof them by bR .
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De�nition 17 (Prescien t Riv als) Prescient rivals bR are statesthat are as predictive as the causal states;
viz., for all L 2

� + ,

H [
!
S

L
j bR] = H [

!
S

L
jS] : (4.18)

Remark. Prescient rivals are also su�cien t statistics.

Theorem 6 (Su�ciency and Determinism Imply Prescience) If R is a su�cient statistic for the

next symbol, i.e., if P(
!
S

1
= ajR = � (

 
s )) = P(

!
S

1
= ajS = � (

 
s )) for all a 2 A, and if R is deterministic (in

the senseof De�nition 59), then R is prescient. That is, deterministic states which get the distribution of
the next symbol right are prescient.

Proof : It will be enough to show that, for any L , P(
!
S

L
jR ) = P(

!
S

L
jS), since then the equality of

conditional entropies is obvious. I do this by induction; supposethat the equality of conditional probabilities
holds for all lengths of futures up to someL , and consider futures of length L + 1.

P(
!
S

L +1
= sL ajR = � (

 
s )) = (4.19)

= P(
!
SL +1 = ajR = � (

 
s );

!
S

L
= sL )P(

!
S

L
= sL jR = � (

 
s ))

= P(
!
SL +1 = ajR = � (

 
s );

!
S

L
= sL )P(

!
S

L
= sL jS = � (

 
s ))

where the secondline usesthe inductiv e hypothesis. Since we assumethe R states are deterministic, the
combination of the current e�ectiv e state (� (

 
s )) and the next L symbols (sL ) �xes a unique future e�ectiv e

state, namely � (
 
ssL ). Thus, by Proposition 8, Appendix B.3, weseethat P(

!
SL +1 = ajR = � (

 
s );

!
S

L
= sL ) =

P(
!
S

1
= ajR = � (

 
ssL )) . Substituting back in,

P(
!
S

L +1
= sL ajR = � (

 
s )) = P(

!
S

1
= ajR = � (

 
ssL ))P(

!
S

L
= sL jS = � (

 
s ) (4.20)

= P(
!
S

1
= ajS = � (

 
ssL ))P(

!
S

L
= sL jS = � (

 
s ) (4.21)

= P(
!
S

L +1
= sL ajS = � (

 
s )) ; (4.22)

so the induction is established. Since(by hypothesis) it holds for L = 1, it holds for all positive L . QED.
Remark. The causalstatessatisfy the hypothesesof this proposition. Since,aswe shall see(Theorem 7),

the causalstates are the minimal prescient states, they are also the minimal deterministic states which get
the distribution of the next symbol right. This is handy when doing � -machine reconstruction (Chapter 5).

Lemma 12 (Re�nemen t Lemma) For all prescient rivals bR and for each b� 2 bR , there is a � 2 S and
a measure-0 subsetb� 0 � b� , possiblyempty, such that b� n b� 0 � � , where n is set subtraction.

The proof is identical to that for the memorylesscase(Lemma 4). An alternativ e, more algebraic, proof
appears in Appendix B.4. The Lemma is illustrated by the contrast betweenFigures 4.4 and 4.3.

Theorem 7 (Causal States Are Minimal) (Crutch�eld and Shalizi 1999) For all prescient rivals bR ,

C� ( bR ) � C� (S) : (4.23)
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Figure 4.4: A prescient rival partition bR must bea re�nement of the causal-statepartition almost everywhere.
That is, almost all of each bR i must contained within someSj ; the exceptions, if any, are a set of histories
of measure0. Here for instance S2 contains the positive-measureparts of bR 3, bR 4, and bR 5. One of these
rival states, say bR 3, could have member-histories in any or all of the other causalstates, provided the total
measureof such exceptional histories is zero. Cf. Figure 4.3.

The proof is identical to that in the memorylesscase(Theorem 2).
Remark 1. No rival pattern, which is as good at predicting the observations as the causalstates, is any

simpler than the causal states. (This is the theorem of Crutch�eld and Young (1989).) Occam therefore
tells us that there is no reasonnot to use the causalstates. The next theorem shows that causalstates are
uniquely optimal and so that Occam's Razor all but forcesus to usethem.

Remark 2. Here it becomesimportant that we are trying to predict the whole of
!
S and not just some

piece,
!
S

L
. Suppose two histories

 
s and

 
s

0
have the same conditional distribution for futures of lengths

up to L , but di�ering onesafter that. They would then belong to di�eren t causal states. An � -state that

mergedthose two causalstates, however, would have just asmuch abilit y to predict
!
S

L
as the causalstates.

More, theseR-stateswould be simpler, in the sensethat the uncertainty in the current state would be lower.
Causal states are optimal, but for the hardest job | that of predicting futures of all lengths.

Corollary 3 (Causal States Are Minimal Su�cien t Statistics) The causal states are minimal su�-
cient statistics for predicting futures of all lengths.

The proof is identical to that for the memorylesscase(Corollary 1).
I can now, as promised, de�ne the statistical complexity of a process(Crutc h�eld 1994a;Crutch�eld and

Young 1989).

De�nition 18 (Statistical Complexit y of a Pro cess) The statistical complexity \ C� (O)" of a process
O is that of its causal states: C� (O) � C� (S).

Due to the minimalit y of causal states, the statistical complexity measuresthe averageamount of his-
torical memory stored in the process.Sincewe can trivially elaborate internal states, while still generating
the same observed process| arbitrarily complex sets of states can be prescient. If we didn't have the
minimalit y theorem, we couldn't talk about the complexity of the process,just that of various predictors of
it (Crutc h�eld 1992).

Theorem 8 (Causal States Are Unique) For all prescient rivals bR , if C� ( bR ) = C� (S), then there
exists an invertible function between bR and S that almost always preservesequivalence of state: bR and �
are the sameas S and � , respectively, except on a set of histories of measure 0.



36

The proof is the sameas for the memorylesscase(Theorem 3); the sameremarks apply.

Theorem 9 ( � -Mac hines Are Minimally Sto chastic) (Crutch�eld and Shalizi 1999) For all prescient
rivals bR ,

H [ bR 0j bR] � H [S0jS] ; (4.24)

where S0 and bR 0 are the next causal state of the processand the next �̂ -state, respectively.

Proof. From Lemma 10, S0 is �xed by S and
!
S

1
together, thus H [S0jS;

!
S

1
] = 0 by Eq. A.23. Therefore,

from the chain rule for entropies Eq. A.17,

H [
!
S

1
jS] = H [S0;

!
S

1
jS] : (4.25)

There's no result like the Determinism Lemma10for the rival states bR, but entropies arealwaysnon-negative:

H [ bR 0j bR ;
!
S

1
] � 0. Since for all L , H [

!
S

L
j bR] = H [

!
S

L
jS] by the de�nition (De�nition 17) of prescient rivals,

H [
!
S

1
j bR ] = H [

!
S

1
jS]. Now apply the chain rule again,

H [ bR 0;
!
S

1
j bR ] = H [

!
S

1
j bR ] + H [ bR 0j

!
S

1
; bR ] (4.26)

� H [
!
S

1
j bR ] (4.27)

= H [
!
S

1
jS] (4.28)

= H [S0;
!
S

1
jS] (4.29)

= H [S0jS] + H [
!
S

1
jS0; S] : (4.30)

To go from Eq. 4.28 to Eq. 4.29 useEq. 4.25, and in the last step usethe chain rule oncemore.
Using the chain rule one last time, with feeling, we have

H [ bR 0;
!
S

1
j bR] = H [ bR 0j bR ] + H [

!
S

1
j bR 0; bR] : (4.31)

Putting theseexpansions,Eqs. 4.30 and 4.31, together we get

H [ bR 0j bR] + H [
!
S

1
j bR 0; bR] � H [S0jS] + H [

!
S

1
jS0; S] (4.32)

H [ bR 0j bR] � H [S0jS] � H [
!
S

1
jS0; S] � H [

!
S

1
j bR 0; bR] :

From Lemma 12, we know that S = g( bR), so there is another function g0 from ordered pairs of � -states to
ordered pairs of causalstates: (S0; S) = g0( bR 0; bR). Therefore, Eq. A.25 implies

H [
!
S

1
jS0; S] � H [

!
S

1
j bR 0; bR] : (4.33)

And so, we have that

H [
!
S

1
jS0; S] � H [

!
S

1
j bR 0; bR] � 0

H [ bR 0j bR] � H [S0jS] � 0

H [ bR 0j bR ] � H [S0jS] : (4.34)

QED.
Remark. What this theorem says is that there is no more uncertainty in transitions betweencausalstates,

than there is in the transitions betweenany other kind of prescient e�ectiv e states. In other words, the causal
states approach as closely to perfect determinism | in the usual physical, non-computation-theoretic sense
| as any rival that is as good at predicting the future.
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4.4 Bounds

In this section I develop bounds between measuresof structural complexity and entropy derived from � -
machines and those from ergodic and information theories, which are perhapsmore familiar.

De�nition 19 (Excess En trop y) The excessentropy E of a processis the mutual information between its
semi-in�nite past and its semi-in�nite future:

E � I [
!
S;

 
S] : (4.35)

The excessentropy is a frequently-used measureof the complexity of stochastic processesand appears
under a variety of names;e.g., \predictiv e information", \stored information", \e�ectiv e measurecomplex-
it y", and so on (Crutc h�eld and Packard 1983; Shaw 1984; Grassberger 1986; Lindgren and Nordahl 1988;
Li 1991; Arnold 1996; Bialek and Tishby 1999). E measuresthe amount of apparent information stored in
the observed behavior about the past. But E is not, in general, the amount of memory that the process
stores internal ly about its past; that's C� .

Theorem 10 (The Bounds of Excess) The statistical complexity C� bounds the excessentropy E:

E � C� ; (4.36)

with equality if and only if H [Sj
!
S] = 0.

Proof. E = I [
!
S;

 
S] = H [

!
S] � H [

!
S j

 
S] and, by the construction of causalstates, H [

!
S j

 
S] = H [

!
S jS], so

E = H [
!
S] � H [

!
S jS] = I [

!
S; S] : (4.37)

Thus, sincethe mutual information betweentwo variables is never larger than the self-information of either

one of them (Eq. A.20), E � H [S] = C� , with equality if and only if H [Sj
!
S] = 0. QED.

Remark 1. Note that I invoked H [
!
S], not H [

!
S

L
], but only while subtracting o� quantities like H [

!
S j

 
S].

We needn't worry, therefore, about the existenceof a �nite L ! 1 limit for H [
!
S

L
], just that of a �nite

L ! 1 limit for I [
!
S

L
;

 
S] and I [

!
S

L
; S]. There are many elementary cases(e.g., the fair coin process)where

the latter limits exist, while the former do not. (SeeGray (1990) for details on how to construct such a
mutual information with full rigor.)

Remark 2. At �rst glance, it is tempting to seeE as the amount of information stored in a process.
As Theorem 10 shows, this temptation should be resisted. E is only a lower bound on the true amount of
information the processstores about its history, namely C� . You can, however, say that E measuresthe
apparent information in the process,since it is de�ned directly in terms of observed sequencesand not in
terms of hidden, intrinsic states, as C� is.

Remark 3. Perhapsanother way to describe what E measuresis to note that, by its implicit assumption
of block-Markovian structure, it takessequence-blocks as states. But even for the classof block-Markovian
sources,for which such an assumption is appropriate, excessentropy and statistical complexity measure
di�eren t kinds of information storage. Feldman and Crutch�eld (1998a)and Crutch�eld and Feldman (1997)
showed that in the caseof one-dimensionalrange-R spin systems,or any other block-Markovian sourcewhere
block con�gurations are isomorphic to causalstates,

C� = E + Rh� ; (4.38)

for �nite R. Only for zero-entropy-rate block-Markovian sourceswill the excessentropy, a quantit y estimated
directly from sequenceblocks, equal the statistical complexity, the amount of memory stored in the process.
Examples of such sourcesinclude periodic processes,for which C� = E = log2 p, where p is the period.
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Corollary 4 For all prescient rivals bR ,

E � H [ bR] : (4.39)

Proof. This follows directly from Theorem 7, sinceH [ bR] � C� . QED.

Lemma 13 (Conditioning Do es Not A�ect En trop y Rate) For all prescient rivals bR ,

h[
!
S] = h[

!
S j bR] ; (4.40)

where the entropy rate h[
!
S] and the conditional entropy rate h[

!
S j bR] were de�ned in Eq. 4.4 and Eq. 4.5,

respectively.

Proof. From Theorem 10 and its Corollary 4,

lim
L !1

�
H [

!
S

L
] � H [

!
S

L
j bR]

�
� lim

L !1
H [ bR] ; (4.41)

or,

lim
L !1

H [
!
S

L
] � H [

!
S

L
j bR]

L
� lim

L !1

H [ bR]
L

: (4.42)

Since,by Eq. A.15, H [
!
S

L
] � H [

!
S

L
j bR ] � 0,

h[
!
S] � h[

!
S j bR] = 0 : (4.43)

QED.
Remark. Forcing the processinto a certain state bR = b� is akin to applying a controller, once. But in the

in�nite-en tropy case,H [
!
S

L
] ! L !1 1 , which is the generalone, the future could contain (or consist of) an

in�nite sequenceof disturbances. In the faceof this \grand disturbance", the e�ects of the �nite control are
simply washedout.

Another way of viewing this is to re
ect on the fact that h[
!
S] accounts for the e�ects of all the dependen-

ciesbetweenall the parts of the entire semi-in�nite future. This, owing to the time-translation invarianceof
(conditional) stationarit y, is equivalent to taking account of all the dependenciesin the entire process,includ-

ing those betweenpast and future. But these are what is captured by h[
!
S j bR]. It is not that conditioning

on R fails to reduceour uncertainty about the future; it doesso, for all �nite times, and conditioning on S
achievesthe maximum possiblereduction in uncertainty. Rather, the lemma assertsthat such conditioning
cannot a�ect the asymptotic rate at which such uncertainty grows with time.

Theorem 11 (Con trol Theorem) Given a class bR of prescient rivals,

H [S] � h[
!
S j bR] � C� ; (4.44)

where H [S] is the entropy of a single symbol from the observablestochastic process.

Proof. As is well known (Cover and Thomas 1991, Theorem 4.2.1, p. 64), for any stationary stochastic
process,

lim
L !1

H [
!
S

L
]

L
= lim

L !1
H [SL j

!
S

L � 1
] : (4.45)



39

Moreover, the limits always exist. Up to this point, I de�ned h[
!
S] in the manner of the left-hand side; recall

Eq. 4.4. It's now more convenient to usethe right-hand side.
From the de�nition of conditional entropy,

H [
 
S

L
] = H [

 
S

1
j
 
S

L � 1
] + H [

 
S

L � 1
]

= H [
 
S

L � 1
j
 
S

1
] + H [

 
S

1
] : (4.46)

So we can expressthe entropy of the last observable the processgeneratedbefore the present as

H [
 
S

1
] = H [

 
S

L
] � H [

 
S

L � 1
j
 
S

1
] (4.47)

= H [
 
S

1
j
 
S

L � 1
] + H [

 
S

L � 1
] � H [

 
S

L � 1
j
 
S

1
] (4.48)

= H [
 
S

1
j
 
S

L � 1
] + I [

 
S

L � 1
;

 
S

1
] : (4.49)

To go from Eq. 4.47 to Eq. 4.48, substitute the �rst RHS of Eq. 4.46 for H [
 
S

L
].

Taking the L ! 1 limit has no e�ect on the LHS,

H [
 
S

1
] = lim

L !1

�
H [

 
S

1
j
 
S

L � 1
] + I [

 
S

L � 1
;

 
S

1
]
�

: (4.50)

Sincethe processis stationary, we can move the �rst term in the limit forward to H [SL j
!
S

L � 1
]. This limit is

h[
!
S], by Eq. 4.45. Furthermore, becauseof stationarit y, H [

 
S

1
] = H [

!
S

1
] = H [S]. Shifting the entropy rate

h[
!
S] to the LHS of Eq. 4.50 and appealing to time-translation onceagain,

H [S] � h[
!
S] = lim

L !1
I [

 
S

L � 1
;

 
S

1
] (4.51)

= I [
 
S;

!
S

1
] (4.52)

= H [
!
S

1
] � H [

!
S

1
j

 
S] (4.53)

= H [
!
S

1
] � H [

!
S

1
jS] (4.54)

= I [
!
S

1
; S] (4.55)

� H [S] = C� ; (4.56)

where the last inequality comesfrom Eq. A.20. QED.
Remark 1. Thinking of the controlling variable as the causalstate, this is a limitation on the controller's

abilit y to reducethe entropy rate.
Remark 2. This is the only result so far where the di�erence betweenthe �nite- L and the in�nite- L cases

is important. For the analogousresult in the �nite case,seeAppendix B.5, Theorem 25.
Remark 3. By applying Theorem 7 and Lemma 13, we could go from the theorem as it stands to

H [S] � h[
!
S j bR] � H [ bR]. This has a pleasing appearanceof symmetry to it, but is actually a weaker limit

on the strength of the pattern or, equivalently , on the amount of control that �xing the causalstate (or one
of its rivals) can exert.

4.5 The Ph ysical Meaning of Causal States

All this has beenvery abstract, and not particularly \ph ysical." This is the price for a generalmethod, one
which is not tied to particular assumptionsabout the physical character of the processesto which it can be
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applied. That said, nothing prevents us from applying the formalism to the kind of things we cameto know
and love while reading Landau and Lifshitz (1980). In particular, the computational mechanicsof time series
can be applied to the time evolution of ordinary statistical-mechanical systems,and the result helps clarify
the meaning of causalstates | and the meaning of macrostatesin statistical mechanics.5

Consider a collection of physical particles, obeying the usual laws of classical mechanics with some
Hamiltonian or other, and described by an ensemble distribution in the microscopic phase space�. The
ensemble is not necessarilyany of the usual equilibrium ensembles, and we don't supposethat the system
is anywhere near equilibrium or a steady state. Now think of your favorite macroscopicvariable S. The
value of S will be a function of where the system happens to be in � when you make your measurement,
i.e., S = s(x), x 2 �. The macrovariable S induces a partition on the phasespace�; call the partition A.
Conversely, a (measurable)partition of � corresponds to somemacroscopicvariable. If you measureseveral
macrovariables S;R : : : simultaneously (which is always possible,classically), the induced partition of � is
simply the product of the partitions of the individual variables, A � B � : : : . We may regard this joint
variable as simply yet another macroscopicvariable, which could be measureddirectly with the appropriate
instrument. So, without loss of generality, let's just think about a single macrovariable. With only minor
loss of generality, moreover, let's assumethat it's discrete, and measuredat discrete times.6 Restricting
ourselvesto discrete times allows us to write the time-evolution of the phasespacein the form of a discrete
map, T : � 7! �.

Histories of measurements of this macrovariable induceyet another partition of �, in the following manner.
Each observation value s corresponds to a set As of points in phasespace. The sequenceof measurements
ss0 thus corresponds to the set Ass0 � TAs \ As0, where T is the phase-spacemapping operator. Since the
setsAs form a partition, it's easyto seethat the setsAss0 form a re�nement of that partition. An exercise
in mathematical induction extendsthis to any sequenceof measurements of countable length. The partition
induced by histories of length L + 1 is always a re�nement of histories of length L . So far this is an entirely
standard construction of symbolic dynamics for a statistical-mechanical system, as found in, e.g., Dorfman
(1998). Normally, to get useful results from such a construction, the initial partition must be a Markov
or generating partition, or otherwise prett y special. Here we have just started with whatever observable
partition we liked.

Now comes the tric k. By making the time evolution of the statistical mechanical system look like
an ordinary discrete stochastic process,we have brought it within the range of application of the theory
developed in this chapter. We can construct causalstates for it, and those states have three key properties:
they are optimal predictors of the original sequenceof measurements; they are Markovian; and they are the

minimal set of states of which both those things are true. But S is a partition of
 
S, which in turn is a

partition of �. Therefore S inducesa partition on � (which is coarser,generally considerably coarser,than

that induced by
 
S). The causal state, therefore, corresponds to a measurablemacroscopicvariable, call it

C, which is the coarsestone that can both predict the macrovariable(s) with which we started, and whose
own dynamics are Markovian. But theseare the properties of a \go od" set of macroscopicvariables, of ones
which de�ne a useful macrostate: they are dynamically autonomous(Mark ovian), the present value of them
predicts future behavior optimally , and nothing simpler does the job.7 Thermodynamic macrostates, then,
are causal states, and conversely causal states are a kind of generalizedmacrostate, with the value of the
causalstate acting as a generalizedorder parameter.

Put slightly di�eren tly , what we have done is construct a partition of the phasespace� which is Marko-
5This section derives from Shalizi and Mo ore (2001). That in turn is based on earlier work connecting statistical and

computational mechanics (Crutc h�eld 1992; Crutc h�eld 1994a; Crutc h�eld and Feldman 1997; Feldman and Crutc h�eld 1998a;
Feldman 1998; Crutc h�eld and Shalizi 1999). Cf. Lloyd and Pagels (1988).

6The limited accuracy and precision of all instrumen ts arguably imp osessomething lik e discretization on all our measurements
anyway, but that's a bit of a tric ky point, which I'd lik e to evade.

7An apparent exception is found in systems, lik e glasses(Zallen 1983) and spin glasses(Fischer and Hertz 1988), where there
are memory e�ects over very long time scales. These are due, however, to the very large number of metastable states in these
systems, transitions between which are slow. The memory e�ects can be eliminated by intro ducing the occupations of these
metastable states as order parameters | by adding a macroscopic number of degreesof freedom, as Fischer and Hertz put it.
For more on this point, seeShalizi and Mo ore (2001).
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vian, starting from an arbitrary observational partition. Each causal state thus corresponds not only to a
history of observations, but also to a region in phasespace. (Perry and Binder (1999) have mapped these
regions, albeit for an unusually simple phase space.) Even better, since the causal states form a Markov
chain, the distribution of sequencesof causalstates is a Gibbs distribution. 8 Yet we haven't had to assume
that our system is in equilibrium, or in a steady state, or has any particular kind of ensemble (such as a
maximum entropy ensemble). This is, perhaps, part of the justi�cation for why the assumption of Gibbs
distributions is often fruitful in non-equilibrium statistical mechanics.9

Of course,this argument is very, very far from a complete story for macrostatesand macrovariables. It
says nothing, for instance,about why extensivequantities are good macrovariables. Nor doesit say anything
about why macrovariablesare, so to speak, recyclable,why pressure(say) is a good macrovariable for many
systemswith little in common microscopically. The explanation of such regularities presumably is to be
found, not in the very generalstatistical properties captured by computational mechanics, but in the more
detailed dynamical properties studied by ergodic theory (Ruelle 1989;Dorfman 1998;Gaspard 1998;Ruelle
1999), and to someextent in the theory of large deviations (Ellis 1985;Ellis 1999).

8The proof that Mark ovianit y implies a Gibbs measure over sequences,and vice versa, while fairly straigh tforw ard, is outside
the scope of this book. SeeGuttorp (1995) for an elementary proof.

9Thanks to Erik van Nim wegen for this observation.
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Chapter 5

A Mac hine Reconstruction Algorithm

Those who are good at archery learnt from the bow and not from Yi the Archer. Those who
know how to manageboats learnt from the boats and not from Wo. Those who can think learnt
from themselves,and not from the Sages.
|Anon ymous (T'ang Dynasty).

A natural and appropriate reaction to the theory developed in Chapters 3 and 4 is that it may be all
well and good as a pure mathematical construction, but that it will only matter if it can be implemented, if
it can be put into practice. This is as it should be. Consider the di�erence in fate betweentwo similar ideas
proposedat roughly the sametime, namely attractor reconstruction, a.k.a. \geometry from a time series"
(Packard, Crutch�eld, Farmer and Shaw 1980),and the Turing-machine test for the presenceof deterministic
structure in a time series(Takens1983). The former has becomea fundamental tool of nonlinear dynamics,
not just becauseit is mathematically important, but becauseit can be reduced to practice. The latter is
almost completely ignored, becauseit is simply impossible to implement. Implementation separatesNeat
Ideas from Real Tools.

This has been recognizedsince the �rst days of computational mechanics, when an algorithm was de-
veloped for � -machine reconstruction (Crutc h�eld and Young 1989; Crutch�eld and Young 1990), which
mergeddistinct histories together into states when their morphs seemed\close". (I will brie
y describe this
algorithm, and related but distinct approaches, in Section 5.1.) This has since becomethe standard one,
to the point where somecon
ate it with computational mechanics as such. Peoplehave usedthe algorithm
on discrete maps (Crutc h�eld and Young 1990), on sequencesfrom cellular automata (Hanson 1993) and
on one-dimensionalspin systems(Feldman and Crutch�eld 1998a;Feldman 1998). It has even beenapplied
to experimental data, from the dripping faucet system (Gon�calves,Pinto, Sartorelli and de Oliveira 1998),
from stochastic resonanceexperiments (Witt, Neiman and Kurths 1997), and from turbulent geophysical

uid 
o ws (Palmer, Fairall and Brewer 2000;Nicholas Watkins, personalcommunication, 2000).

While the Crutch�eld-Y oung algorithm has considerableintuitiv e appeal, and has a record of successin
practice, it is not altogether satisfactory. We are essentially dealing with a problem in statistical inference,
and its statistical justi�cation is weak. Becauseit works by merging, it e�ectiv ely makesthe most complicated
model of the processit can. This grossrejection of Occam's Razor is not only ideologically repugnant, but
hard to analyze statistically . Finally, the algorithm does not make use of any of the known properties of
causalstates and � -machines to guide the search, e.g., though the causalstates are deterministic, the states
it returns often aren't.

This chapter presents a new algorithm which improves on the old Crutch�eld-Y oung algorithm in all
these respects. It operateson the opposite principle, namely creating or splitting o� new states only when
absolutely forced to. I specify the new algorithm, prove its asymptotic reliabilit y or convergenceon the true
states, and describe its successfulfunction. I then speculate about how the rate of convergencevaries with
characteristics of the process,such as its statistical complexity C� , and make hand-wavy arguments for a
particular form of dependence.
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Erik van Nimwegen originally suggestedthe core of this idea, inspired by Bussemaker, Li and Siggia
(2000), which, however, looks at \w ords" in biosequencedata and natural-language corpora rather than
causal states. (Thanks to Erik as well for providing a preprint of that paper.) The development of this
algorithm is joint work with Kristina Klinkner, and a more extensive report on it can be had in Klinkner
and Shalizi (2001).

5.1 Reconstructing States by Merging

Previous procedures for reconstructing the states operate by using what one might call compressionor
merging. The default is that each distinct history encountered in the data is a distinct causalstate. Histories
are then merged into states on the basis of equality of conditional probabilities of futures, or at least of
closenessof those probabilities.

The standard Crutch�eld-Y oung merging algorithm is a tree method. Assumethe processtakesvalues
from an alphabet A of sizek. Then the algorithm is to build a k-ary tree of somepre-setdepth L , wherepaths
through the tree correspond to sequencesof observations of length L , obtained by sliding a window through
the data stream (or streams, if there are several). If L = 4, say, and the sequenceabbais encountered, the
path in the tree will start at the root node, take the edgelabeled a to a new node, then take the outgoing
edgelabeled b to a third node, then the edgelabeled b from that, and �nally the edgelabeled a to a �fth
node, which is a leaf. An edgesof the tree is labeled, not just with a symbol, but also with the number of
times that edgehas been traversedin scanning through the data stream. Call the number on the ai edge
going out of node n, � (ai jn), and the total number of sequenceswe have entered into the tree N .

The traversal-counts are converted into empirical conditional probabilities by simple division:

P̂N (ai jn) =
� (ai jn)

P
a j

� (aj jn)

(We write P̂N to remind ourselves that the probabilit y estimate is a function of the number of data points
N .) Thus attached to each non-leaf node is an empirical conditional distribution for the next symbol. If n
has descendants to depth K , then it has (by implication) a conditional distribution for futures of length K .

The merging procedureis now as follows. Consider all nodeswith sub-treesof depth L=2. Take any two
of them. If all the empirical probabilities attached to the edgesin their sub-treesare within someconstant �
of one another, then the two nodesare equivalent, and they (and their descendants) should be mergedwith
one another. The new node for the root will have incoming links from both the parents of the old nodes.
This procedureis to be repeated until no further merging is possible.1

All other methods for causalstate reconstruction currently in use are also basedon merging. Take, for
instance, the \top ological" or \mo dal" merging procedure of Perry and Binder (1999). They consider the
relationship between histories and futures, both (in the implementation) of length L . Two histories are
assignedto the samestate if the setsof futures which can succeedthem are identical. 2 The distribution over
those futures is then estimated for each state, not for each history.

5.1.1 What's Wrong with Merging Metho ds?

The basic problem with all merging methods is that their default is to treat each history as belonging to its
own causalstate, creating larger causalstates only when they must. The implicit null model of the process
is thus the most complicated onethat can be devised,given the length of histories available to the algorithm.
This seemsperverse,especially given computational mechanics's strong commitment to Occam'sRazor and
the like. Worse, it makes it very hard, if not impossible, to apply standard tools of statistical inferenceto
the estimation procedure.

1Since the criterion for merging is not a true equivalence relation (it isn't transitiv e), the order in which states are examined
for merging matters, and various tric ks exist for dealing with this. See,e.g., Hanson (1993).

2This is an equivalence relation, but it isn't causal equivalence.
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For instance: what is a reasonablevalue of � ? Clearly, as the amount of data increases,and the Law of
Large Numbers makesempirical probabilities converge to true probabilities, � should grow smaller. But it
is grossly impractical to calculate what � should be, since the null model itself is so complicated. (Current
best practice is to pick � as though the processwere an I ID multinomial, which is just the opposite of the
algorithm's default estimate!) Furthermore, using the same� for every pair of nodesis a bad idea, sinceone
node might have been sampled much lessoften than the other, and so the conditional probabilities in its
sub-tree are lessaccurate than those in the other.

The results summarized in Chapter 4 tell us a lot about what the causal states are like; for instance,
they are deterministic, they are Markovian, etc. No existing reconstruction algorithm makes use of this
information to guide its search. The Crutch�eld-Y oung algorithm frequently returns a non-deterministic
set of states, for instance, which can't possibly be the true causal states.3 This sort of behavior should be
discouraged.

None of this is to say that merging algorithms do not work in practice, since they have. It's even clear
that, given enough data, and a small enough � , if the true causal states can be identi�ed on the basis of
�nite histories, the Crutch�eld-Y oung algorithm will identify them. Still, their limitations and de�ciencies
are deeply unsatisfying.

5.2 Reconstructing States by Splitting

5.2.1 Description of the Metho d

We assumewe are given a sequenceof length N over the �nite alphabet A .4 We wish to calculate from this
a classof states, Ŝ. Each member �̂ of Ŝ is a set of histories, or su�xes to histories. The function �̂ maps
a �nite history

 
s to that �̂ containing the longest sequenceterminating

 
s , i.e., to the state containing the

longest su�x of
 
s .

Each �̂ 2 Ŝ, is associated with a distribution for the next observable
!
S

1
, i.e., P(

!
S

1
= ajŜ = �̂ ) is de�ned

for each a 2 A and each �̂ . We will call this conditional distribution the morph of the state.
The null hypothesis is that the processis Markovian on the basisof the states in Ŝ,

P(
!
S

1
j
 
S

L
= asL � 1) = P(

!
S

1
j
 
S

L � 1
= sL � 1) (5.1)

= P(
!
S

1
jŜ = �̂ (sL � 1)) (5.2)

We apply a standard statistical test to this hypothesis,e.g. the Kolmogorov-Smirnov test5, at somespec-
i�ed signi�cance level. (If we usethe KS test, we can actually avoid estimating the conditional distribution,
and just usethe empirical frequencycounts.) This controls directly the probabilit y of type I error (rejecting
the null when it is true), and generally the KS test has higher power (lower probabilit y of type I I error, of
accepting the null when it's false) than other, similar tests, such as � 2 (Rayner and Best 1989). We modify
Ŝ only when the null is rejected.

I. Initialization. Set L = 0, and Ŝ = f �̂ 0g, where �̂ 0 = f;g , i.e., �̂ 0 contains only the null sequence.We
assumethat the null sequencecan be regarded as a su�x of any history, so that initially all histories are
mapped to �̂ 0. The morph of �̂ 0 is de�ned by

P(
!
S

1
= ajŜ = �̂ 0) = P(

!
S

1
= a) ;

3 It is sometimes claimed (Jay Palmer, personal communication) that the non-determinism is due to non-stationarit y in the
data stream. While a non-stationary source can cause the Crutc h�eld-Y oung algorithm to return non-deterministic states, the
algorithm quit capable of doing this when the source is I ID.

4The modi�cation to handle multiple sequences,multiple samples from the same process, is discussed at the end of this
section.

5SeePress, Teukolsky, Vetterling and Flannery (1992, sec. 14.3) and Hollander and Wolfe (1999, pp. 178{187) for details of
this test.
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sothe initial model is that the processis a sequenceof independent, identically-distributed random variables.
I I. Homogeneity. We �rst generatestates whosemembers are homogeneous(De�nition 6) for the next

symbol | whose parts all have the same morph. Or rather, we generatestates whose members have no
signi�c ant di�erences in their morphs.

1. For each �̂ 2 Ŝ, calculate P̂N (
!
S

1
jŜ = �̂ ) | the \distribution" of that state.

(a) For each sequence
 
s

L
2 �̂ , estimate P(

!
S

1
= aj

 
S

L
=

 
s

L
). The naive maximum-likelihood

estimate,

P̂N (
!
S

1
= aj

 
S

L
=

 
s

L
) =

� (
 
S

L
=

 
s

L
;

!
S

1
= a)

� (
 
S

L
=

 
s

L
)

;

is simple and well-adapted to the later part of the procedure,but other estimators could be used.

This distribution is the morph of
 
s

L
.

(b) The morph of �̂ is the weighted averageof the morphs of the sequences
 
s

L
2 �̂ , with weights

proportional to � (
 
S

L
=

 
s

L
).

(c) For the special casewhen L = 0 and the only history is the null sequence,seeabove.

2. For each �̂ 2 Ŝ, test the null (Mark ov) hypothesis. For each length L sequence
 
s

L
2 �̂ and each a 2 A,

generatethe su�x of length L + 1 a
 
s

L
| a child su�x of

 
s

L
.

(a) Estimate the morph of a
 
s

L
by the samemethod as usedabove.

(b) Test whether the morphs of a
 
s

L
and �̂ di�er signi�can tly .

(c) If they do, then it is worthwhile to distinguish a
 
s

L
from

 
s

L
, and from all the other histories in

�̂ .

i. Test whether there are any states Ŝ whose morphs do not di�er signi�can tly from that of

a
 
s

L
. If so, add a

 
s

L
to the state whosemorph it matchesmost closely, as measuredby the

scoreof the signi�cance test6.

ii. If the morph of a
 
s

L
is signi�can tly di�eren t from the morphs of all existing states, create a

new state and add a
 
s

L
to it, with its morph.

iii. Generateall the other child su�xes of
 
s

L
, and assignthem to the states whosemorphs they

match most closely.

iv. Delete
 
s

L
(and any of its ancestors)7 from �̂ .

v. Recalculate the morphs of states from which sequenceshave beenadded or deleted.

(d) If the morph of a
 
s

L
doesnot di�er signi�can tly from that of �̂ , add a

 
s

L
to �̂ .

3. Increment L by one.

4. Repeat steps1{3 until we reach somepreset maximum length L max .

At the end of this procedure,no history is in a state whosemorph is signi�can tly di�eren t from its own.
Moreover, every state's morph is signi�can tly di�eren t from every other state's morph. The causal states
have this property, but they are also deterministic, and we needanother procedureto \determinize" Ŝ.

I I I. Determinization.

6Actually , which of these states a
 
s

L
is assigned to is irrelev ant in the limit where N ! 1 ; but this choice is convenient

and plausible.
7 If any of the ancestors of

 
s

L
are around as su�xes, then they must also be in �̂ .
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1. For each state �̂ 2 Ŝ

(a) For each a 2 A

i. Calculate �̂ (
 
sa) for all

 
s 2 �̂ | theseare the successorstateson a of the histories.

ii. If there is only one successorstate on a, go on to the next a.
iii. If there are n � 2 successorstates on a, create n � 1 new states, moving histories into them

from �̂ so that all histories in the new states and �̂ now have the samesuccessoron a. Go
back to 1.

(b) If every history
 
s in �̂ has the samesuccessoron a, for every a, go on to the next state.

2. For each state, output the list of sequencesin the state, the conditional probabilit y for each symbol
a 2 A, and the successoron a.

It is clear that this procedurewill terminate (in the worst case,when every history is assignedto its own
state), and that when it terminates, Ŝ will be deterministic. Moreover, becausewe create the deterministic
states by splitting the homogeneousstates, the deterministic states remain homogeneous.

Now, by Theorem 6, the causalstates are the minimal states which have a homogeneousdistribution for
the next symbol and are deterministic. If we had accessto the exact conditional distributions, therefore,
and did not have to estimate the morphs, this procedurewould return the causalstates. Instead it returns
a set of states which in somesensecannot be signi�can tly distinguished from them.

5.2.2 Reliabilit y of Reconstruction

The road to wisdom? | Well, it's plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

| Piet Hein (1966, p. 34)

We wish to show that the algorithm we have given will, like the Crutch�eld-Y oung algorithm, return the
correct causal states, if L max is su�cien tly large, and N ! 1 . To be more precise,assumethat L max is

large enoughthat
 
s

L max
is su�cien t to place the system in the correct causalstate. We wish to show that

the probabilit y that Ŝ 6= S goes to zero as N ! 1 . For de�niteness, we'll assumehere that the algorithm
employs the KS test, though nothing vital hingeson that.

Nothing can go wrong in procedureI.

Two sorts of error are possiblein procedure I I. A history
 
s can be put in a classwith

 
s

0
, even though

 
s6��

 
s

0
; or two histories which are causally equivalent could be assignedto di�eren t states,

 
s � �

 
s

0
but

�̂ (
 
s ) 6= �̂ (

 
s

0
). Can we show that theseevents becomevanishingly rare as N ! 1 ?

Each time we see
 
s , the next symbol

!
S

1
is independent of what the next symbol is every other time we

see
 
s ; this is what it meansfor L max to be large enoughto make the processMarkovian. Henceour naive

maximum-likelihood estimate of the morph, P̂N (
!
S

1
j

 
S=

 
s ), is the empirical meanof I ID random variables,

and by the strong law of large numbers, convergeson P(
!
S

1
j

 
S=

 
s ) with probabilit y 1 as N ! 1 .8 If

8For probabilists. Technically , the strong law just tells us this happens for each realization of
!
S

1
separately. Since there are

only a �nite number of them, however, it still is true for them all join tly , and so for the distribution.



47

Create first state

INITIALIZATION
Estimate distribution 

 of symbols

Create states 
from symbols with 
similar distributions

HOMOGENEITY
Estimate distribution

 for each state

Estimate distribution 
 of next symbol

L =< max

Create new state Add sequence
to non-parent state

Add sequence to 
 parent state

accept
null

hypothesis

DETERMINIZATION
Check all states for 

 consistent transitions

L > max
reject
null

hypothesis

Remove all ancestor 
 sequences from parent state

Figure 5.1: Flow chart for the operation of the state-splitting reconstruction algorithm.
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s � �

 
s

0
, then P(

!
S

1
j

 
S=

 
s ) = P(

!
S

1
j

 
S=

 
s

0
). Therefore, 8a 2 A

�
�
�
�P̂N (

!
S

1
= aj

 
S=

 
s ) � P̂N (

!
S

1
= aj

 
S=

 
s

0
)

�
�
�
� ! 0

as N ! 0, at least in probabilit y. Therefore the KS test statistic for the di�erence betweenthe morphs of
 
s

and
 
s

0
will converge to zero, and the probabilit y that two histories which belong to the samecausal state

will be assignedto di�eren t states goesto zero.

If
 
s6��

 
s

0
, then there are two possibilities. (1) 9a 2 A such that P(

!
S

1
= aj

 
S=

 
s ) 6= P(

!
S

1
= aj

 
S=

 
s

0
).

Call the di�erence betweenthose probabilities p. Then
�
�
�
�P̂N (

!
S

1
= aj

 
S=

 
s ) � P̂N (

!
S

1
= aj

 
S=

 
s

0
)

�
�
�
� ! p

in probabilit y, and so the KS test will separate
 
s and

 
s

0
. (2) The morphs are the same,but 9sK 2 A K such

that P(
!
S

1
j

 
S=

 
ssK ) 6= P(

!
S

1
j

 
S=

 
s

0
sK ). Then (by the previous argument)

 
ssK and

 
s

0
sK will belong to

di�eren t states, at least in the limit, and so, recursively,
 
s and

 
s

0
will be separatedby procedureI I I.

Nothing can go wrong in procedureI I I.
Therefore P(Ŝ 6= S) ! 0 as N ! 1 .
In the terminology of mathematical statistics (Cram�er 1945), we have just shown that the algorithm is

a consistent estimator of the causal states. In that of machine learning theory (Kearns and Vazirani 1994;
Vapnik 2000), it is probably approximately correct. In that of the philosophy of science(Glymour 1992;
Spirtes, Glymour and Scheines2001;Kelly 1996) it is reliable.

5.2.3 Adv antages of the Metho d

The main advantages of this algorithm are, naturally enough, the opposites of what I said were the disad-
vantagesof the Crutch�eld-Y oung algorithm.

The implicit null model is that the processis I ID, which is the simplest model we could use. We add states
only when the current model is de�nitely rejected, and so intro duce complications (and complexity) only as
the data demand them. By using a proper hypothesistest, instead of a simple cut-o� as in the Crutch�eld-
Young algorithm, we take in to account the e�ects of samplesizeand the non-trivial form of the distribution.
Adjusting the signi�cance level directly controls the rate at which the algorithm createsspurious states. It
also indicates our fear of over-�tting, or our willingness to accept additional complexity in return for better
�ts to the data. Strict �delit y to Occam not only lets us bask in the warmth of methodological virtue, it
givesus a better handle on what our program is doing.

The algorithm makes full use of the known properties of the causal states | their homogeneity, their
determinism, their Markovianit y. This greatly reducesthe spaceof state classesin which the algorithm must
search, and so should signi�can tly improve the rate of convergence(seebelow). By using homogeneity and
determinism, we never have to look at futures of length greater than one, which is good both for the time
it takes the algorithm to run and for the accuracy of the results. By keepingeverything deterministic and
Markovian, it should be possibleto analytically calculate error rates (size, power, and even severity (Mayo
1996;Mayo and Spanos2000)), at least in the asymptotic regime, by adapting results in Billingsley (1961).

5.2.3.1 Problems with the Metho d

We have no assurancethat the set of states produced by this algorithm will be minimal. Currently there is
no penalty for making spurious distinctions which do not impair prediction. Becausewe can only use �nite
quantities of data, it is always possible that, simply through bad luck and sampling errors, two histories
which belong in the samecausal state will have signi�can tly di�eren t sample-distributions of futures, and
be split. This might be avoided by lowering the signi�cance level in the KS test, and so splitting only when
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the di�erence in the conditional distribution of futures is larger, but past a certain point, this will tend to
lump together states which should be split | the old trade-o� betweenfalsepositivesand falsenegativesin
statistics.

We needto �x a value for L max . Normally, we imagine that this should be as large as time and memory
constraints will allow | if there isn't enough data to go back that far, the signi�cance test will handle
it automatically. It is possible, however, to independently test for the Markov order of the data stream
(Billingsley 1961;van der Heyden, Diks, Hoekstra and DeGoede1998), and so place bounds on L max , if we
want to.

The algorithm returns a single state class. But for �nite N , there are generally lots of others which
would do at least as well on all the tests. The one the algorithm returns depends on such details of its
innards as the order in which it generateschild su�xes. Rather than providing a point estimate of the
causalstates, it would be nice if it gave us all the adequatestate classes,all the oneswhoseperformanceis
over a certain threshold; this would be a kind of con�dence region for the causalstates. Sincedoing that is,
for combinatorial reasons,really impractical, it might be better to randomize such things as the orders of
generationsand checking, and re-run the algorithm repeatedly to samplethe con�dence region.9

Lastly, any pattern which is strictly so�c | where there are subwords of allowed words which are
forbidden | the algorithm will fail to pick up the pattern. A particularly annoying example, suggestedby
Cris Moore, is the languagewhich consistsof all strings wherethe total numbersof zeroesand onesare even.
The di�cult y here is that while the entire data-stream could not consist of (say) the string 000111, that
could occur as a substring (of 00011101or 00011110or even 000111000111), and there is no way of telling
whether or not the string as a whole is admissibleuntil we reach its end. Existing merging algorithms also
fail on this example,however10 It's not clear how to work around this.

5.3 Some Notes on an Implemen tation

We implemented the algorithm in C++, running on Sun workstations. For reasonsof speed and memory
conservation, the conditional probabilit y distributions werestoredasa parsetree, rather asin the Crutch�eld-
Young algorithm. We usedthe Kolmogorov-Smirnov test, modifying slightly the code in Presset al. (1992),
and, following statistical convention, set the signi�cance level to 0:05. The absolute-worst-caserun time is
O(N + jAj L max +1 ) (Klinkner and Shalizi 2001).

We have tested our implementation on a range of processeswhere we can work out the correct causal
states by hand. These include multinomial I ID processes,periodic sequences,stationary Markov models,
hidden Markov models, and master equations/biased random walks. None of the tests caseshas had more
than 7 states. In every case,with N = 1000and L max = 5, the code returns the correct states at least 95%
of the time. All caseswere computed much faster than the worst-caseanalysiswould lead us to fear. While
thesepreliminary results are too scanty to support detailed quantitativ e analysis, qualitativ ely, things look
good.

Currently , the algorithm scansin only a single time series. It will be easyto modify the code so that it
can be given multiple series,storing them all in the sameparse tree. This assumesthat they all comefrom
the samesource,but that's the only way that it makessenseto usemultiple seriesin reconstructing a single
� -machine anyway.

5.4 Statistical Analysis and Rates of Convergence

There are somestatistical properties of the algorithm which needcareful analysis.
One is value of the signi�cance level. If we keep it at :05, then we can expect that, out of twenty times

when we should not split a state, we will do so once. This will e�ect the error statistics (seebelow), but we
9The TETRADalgorithm for causal discovery in graphs does something lik e this (Spirtes, Glymour and Scheines 2001).

10 The Crutc h�eld-Y oung algorithm works very well, however, on languages with parit y constrain ts on blocks of symbols, say,
ones only occur in blocks of even length.
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would also like to know about how often we will not split stateswhen we should. This probabilit y, essentially
the power of the test, is not directly given by the signi�cance level, but it should be possible to calculate
using the tools of statistical inferencefor Markov chains (Billingsley 1961). This in turn will tell us what is
a reasonablevalue for the signi�cance level.

The secondmajor issue is the scaling of the error statistics (Mayo 1996), or the rates of convergence.
We have seenthat thesego to zero as N ! 1 . In�nit y is a long time, however, and we'd like to know how
long we needto wait for the error to be small. More precisely, supposewe intro duce a measureof the error
involved in using the states estimated from N data points, ŜN , rather than the true causal states | call
this error err (ŜN ). Then we would like to �nd a function n(� ; " ) such that, if N > n(� ; " ),

P(err (ŜN ) � " ) � 1 � � : (5.3)

Alternately , we �x � and invert n to get " (N ; � ) | given N data points, with con�dence level 1� � , the error
is " or less. The dependenceof " on N for �xed � is the rate of convergenceof the algorithm.

The exact rate of convergenceis likely to be complicated and highly dependent on the characteristics of
the processgenerating the data, i.e., on precisely the things we want the algorithm to tell us about. We
would therefore like to �nd functions which bound n(� ; " ) or " (N ; � ), where the bounds are fairly tight, but
hold acrossa wide rangeof processes,and the bounding functions can be calculated in terms of very general
characteristics; something like the statistical complexity would be ideal. We want, if not exactly a uniform
rate of convergencein the technical sense,then something of that ilk.

Under the circumstanceswe've assumed,it's easy to adapt results from large deviation and empirical
processtheory (Ellis 1985;Pollard 1984;Feng and Kurtz 2000) to seethat the empirical conditional distri-

butions P̂N (
!
S

1
j

 
S=

 
s ) should converge on P(

!
S

1
j

 
S=

 
s ) exponentially in N . This does not imply that

the global error convergesexponentially , however. In fact, based on studies of the rate of convergenceof
other statistical estimators, especially for stochastic processes(Bickel and Ritov 1995; van de Geer 2000;
Bosq 1998)we conjecture that the rate of convergencewill be polynomial in N and in C�

� 1. Generally such
rates of convergenceresults depend very strongly on the sizeof the spaceof possiblemodels the estimation
algorithm must search through, so we also conjecture that the splitting algorithm, with its constraints of
determinism and the like, will convergefaster than the Crutch�eld-Y oungalgorithm. (For preliminary results
on the error statistics of the Crutch�eld-Y oung algorithm seeCrutch�eld and Douglas 1999.)

Establishing analytical boundson the rate of convergenceis likely to be extremely tric ky, though there are
promising hints in machine learning theory (Evans,Rajagopalanand Vazirani 1993), in addition to empirical
processtheory and large deviations theory. A numerical-experimental approach to the problem would be to
�x on a global error measure,such as the relative entropy between the actual distribution over sequences
and that predicted by ŜN , and measurehow it varies with N and with characteristics of the process,such
as C� . We could similarly look at Ĉ� as a function of N , where we expect the mean to convergeon the true
value from below, and more rapidly the smaller C� is.
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Chapter 6

Connections to Other Approac hes

6.1 Time Series Mo deling

The goal of time seriesmodeling is to predict the future of a measurement serieson the basis of its past.
Broadly speaking, this can be divided into two parts: identify equivalent pastsand then producea prediction

for each classof equivalent pasts. That is, we �rst pick a function � :
 
S 7! R and then pick another function

p : R 7!
!
S. Of course,we can choosefor the range of p futures of some�nite length (length 1 is popular) or

even choosedistributions over these. While practical applications often demand a single de�nite prediction
| \Y ou will meet a tall dark stranger", there are obvious advantagesto predicting a distribution | \Y ou
have a :95 chanceof meeting a tall dark stranger and a :05 chanceof meeting a tall familiar albino." Clearly,
the best choicefor p is the actual conditional distribution of futures for each � 2 R . Given this, the question
becomeswhat the best R is; i.e., What is the best � ? At least in the caseof trying to understand the whole
of the underlying process,the best � is, unambiguously, � . Computational mechanicssubsumesthe whole of
traditional time seriesmodeling.

Computational mechanics| in its focuson letting the processspeak for itself through (possibly impover-
ished) measurements | follows the spirit that motivated one approach to experimentally testing dynamical
systemstheory. Speci�cally , it follows in spirit the methods of reconstructing \geometry from a time se-
ries" intro duced by Packard, Crutch�eld, Farmer and Shaw (1980) and Takens (1981). A closer parallel is
found, however, in later work on estimating minimal equations of motion from data series(Crutc h�eld and
McNamara 1987).

6.2 Decision-Theoretic Problems

The classicfocus of decision theory is \rules of inductiv e behavior" (Neyman 1950;Blackwell and Girshick
1954;Luce and Rai�a 1957). The problem is to chosefunctions from observed data to coursesof action that
possessdesirableproperties. This task has obvious a�nities to considering the properties of � and its rivals
� . We can go further and say that what we have done is considera decisionproblem, in which the available
actions consistof predictions about the future of the process.The calculation of the optimum rule of behavior
in generalfacesformidable technicalities, such asproviding an estimate of the utilit y of every di�eren t course
of action under every di�eren t hypothesis about the relevant aspects of the world. Remarkably enough,
however, we can show that, for anything which it's reasonableto call a decision problem, the optimal rule
of behavior can be implemented using � (App endix D).
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6.3 Sto chastic Pro cesses

Clearly, the computational mechanics approach to patterns and pattern discovery involves stochastic pro-
cessesin an intimate and inextricable way. Probabilists have, of course, long been interested in using
information-theoretic tools to analyze stochastic processes,particularly their ergodic behavior (Billingsley
1965; Gel'fand and Yaglom 1956; Caines 1988; Gray 1990). There has also been considerablework in the
hidden Markov model and optimal prediction literatures on inferring models of processesfrom data or from
given distributions (Blackwell and Koopmans 1957; Ito, Amari and Kobayashi 1992; Algoet 1992; Upper
1997;Jaeger2000). To the best of my knowledge,however, thesetwo approacheshave not beenpreviously
combined.

Perhapsthe closestapproach to the spirit of computational mechanics in the stochastic processliterature
is, surprisingly, the now-classicaltheory of optimal prediction and �ltering for stationary processes,developed
by Wiener and Kolmogorov (Kolmogorov 1941;Wiener 1949;Wiener 1958;Schetzen1989;Wiener 1961). The
two theoriessharethe useof information-theoretic notions and the uni�cation of prediction and structure. So
far asI'v e beenable to learn, however, no onehasever usedthis theory to explicitly identify causalstatesand
causal structure, leaving these implicit in the mathematical form of the prediction and �ltering operators.
Moreover, the Wiener-Kolmogorov framework forcesus to sharply separatethe linear and nonlinear aspects
of prediction and �ltering, becauseit has a great deal of trouble calculating nonlinear operators (Wiener
1958;Schetzen1989). Computational mechanicsis completely indi�eren t to this issue,sinceit packs all of the
process'sstructure into the � -machine, which is equally calculable in linear or strongly nonlinear situations1.

6.4 Formal Language Theory and Grammatical Inference

A formal language is a set of symbol strings (\w ords" or \allo wed words") drawn from a �nite alphabet.
Every formal languagemay be described either by a set of rules (a \grammar") for creating all and only
the allowed words, by an abstract automaton which also generatesthe allowed words, or by an automaton
which acceptsthe allowed words and rejects all \forbidden" words.2 � -machines, stripp ed of probabilities,
correspond to such automata | generative in the simple caseor classi�catory, if we add a reject state and
move to it when none of the allowed symbols are encountered.

SinceChomsky (1956, 1957), it has beenknown that formal languagescan be classi�ed into a hierarchy,
the higher levels of which have strictly greater expressive power. The hierarchy is de�ned by restricting the
form of the grammatical rules or, equivalently , by limiting the amount and kind of memory available to the
automata. The lowest level of the hierarchy is that of regular languages,which may be familiar to Unix-
using readersas regular expressions. These correspond to �nite-state machines, for which relatives of the
minimalit y and uniquenesstheoremsare well known (Lewis and Papadimitriou 1998), and the construction
of causalstates is analogousto \Nero de equivalenceclassing" (Hopcroft and Ullman 1979). Our theorems,
however, are not restricted to this low-memory, non-stochastic setting; for instance, they apply to hidden
Markov models with both �nite and in�nite numbers of hidden states (Upper 1997).

The problem of learning a languagefrom observational data has been extensively studied by linguists,
and by computer scientists interested in natural-languageprocessing.Unfortunately , well developed learning
techniques exist only for the two lowest classesin the Chomsky hierarchy, the regular and the context-free
languages.(For a good account of theseproceduresseeCharniak (1993) and Manning and Sch•utze (1999).)
Adapting and extending this work to the reconstruction of � -machines should form a useful area of future
research (cf. the \hierarc hical � -machine reconstruction" of Crutch�eld (1994a)).

1For more on the nonlinear Wiener theory, seeSection 7.6.
2For more on formal languages and automata, seeApp endix A.4.
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6.5 Computational and Statistical Learning Theory

The goal of computational learning theory (Kearns and Vazirani 1994;Vapnik 2000) is to identify algorithms
that quickly, reliably, and simply lead to good representations of a target \concept". The latter is typically
de�ned to be a binary dichotomy of a certain feature or input space.Particular attention is paid to results
about \probably approximately correct" (PAC) procedures(Valiant 1984): those having a high probabilit y
of �nding members of a �xed \representation class" (e.g., neural nets, Boolean functions in disjunctive
normal form, or deterministic �nite automata). The key word here is \�xed"; as in contemporary time-
series analysis, practitioners of this discipline acknowledge the importance of getting the representation
class right. (Getting it wrong can make easy problems intractable.) In practice, however, they simply
take the representation classas a given, even assumingthat we can always count on it having at least one
representation which exactly captures the target concept. Although this is in line with implicit assumptions
in most of mathematical statistics, it seemsdubious when analyzing learning in the real world (Crutc h�eld
1994a;Boden 1994;Thornton 2000).

In any case,the preceding development made no such assumption. One of the goals of computational
mechanicsis, exactly, discovering the best representation. This is not to say that the results of computational
learning theory are not remarkably useful and elegant, nor that oneshould not take every possibleadvantage
of them in implementing � -machine reconstruction. But these theories belong more to statistical inference,
particularly to algorithmic parameter estimation, than to foundational questionsabout the nature of pattern
and the dynamics of learning.

6.6 Description-Length Principles and Univ ersal Coding Theory

Rissanen'sminimum description length (MDL) principle, most fully described in Rissanen(1989), is a pro-
cedure for selecting the most concisegenerative model out of a family of models that are all statistically
consistent with given data. The MDL approach starts from Shannon's results on the connection between
probabilit y distributions and codes.

Supposewe choosea representation that leads to a classM of models and are given data set X . The
MDL principle enjoins us to pick the model M 2 M that minimizes the sum of the length of the description
of X given M, plus the length of description of M given M . The description length of X is taken to
be � logP(X jM) ; cf. Eq. A.7. The description length of M may be regarded as either given by some
coding scheme or, equivalently , by somedistribution over the members of M . (Despite the similarities to
model estimation in a Bayesian framework (Lindley 1972), Rissanendoesnot interpret this distribution as
a Bayesianprior or regard description length as a measureof evidential support.)

The construction of causal states is somewhat similar to the states estimated in Rissanen'scontext al-
gorithm (Rissanen 1983; Rissanen1989; B•uhlmann and Wyner 1999), and to the \v ocabularies" built by
universal coding schemes,such as the popular Lempel-Ziv algorithm (Lempel and Ziv 1976;Ziv and Lempel
1977). Despite the similarities, there are signi�can t di�erences. For a random source| for which there is a
single causalstate | the context algorithm estimatesa number of states that diverges(at least logarithmi-
cally) with the length of the data stream, rather than inferring a single state, as � -machine reconstruction
would. Moreover, the theory makesno referenceto encodings of rival models or to prior distributions over
them; C� (R ) is not a description length.

6.7 Measure Complexit y

Grassberger (1986) proposedthat the appropriate measureof the complexity of a processwas the \minimal
averageShannoninformation needed" for optimal prediction. This true measure complexity was to be taken
as the Shannon entropy of the states used by someoptimal predictor. The samepaper suggestedthat it
could be approximated (from below) by the excessentropy; there called the e�ective measure complexity, as
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noted in Section4.4 above. This is a position closelyallied to that of computational mechanics, to Rissanen's
MDL principle, and to the minimal embeddings intro duced by attractor-reconstruction methods.

In contrast to computational mechanics, however, the key notion of \optimal prediction" was left un-
de�ned, as were the nature and construction of the states of the optimal predictor. In fact, the predictors
used required knowing the process'sunderlying equations of motion. Moreover, the statistical complexity
C� (S) di�ers from the measurecomplexities in that it is based on the well de�ned causal states, whose
optimal predictive powers are in turn precisely de�ned. Thus, computational mechanics is an operational
and constructive formalization of the insights expressedin Grassberger (1986).

6.8 Hierarc hical Scaling Complexit y

Intro duced in Badii and Politi (1997, ch. 9), this approach seeks,like computational mechanics, to extend
certain traditional ideasof statistical physics. In brief, the method is to construct a hierarchy of n th -order
Markov modelsand examinethe convergenceof their predictions with the real distribution of observablesas
n ! 1 . The discrepancybetweenprediction and reality is, moreover, de�ned information theoretically, in
terms of the relative entropy or Kullback-Leibler distance (Kullbac k 1968; Cover and Thomas 1991). (I'v e
not used this quantit y.) The approach implements Weiss'sdiscovery that for �nite-state sourcesthere is a
structural distinction between block-Markovian sources(subshifts of �nite type) and so�c systems. Weiss
showed that, despite their �nite memory, so�c systemsare the limit of an in�nite seriesof increasingly larger
block-Markovian sources(Weiss1973).

The hierarchical-scaling-complexity approach has several advantages, particularly its abilit y to handle
issuesof scaling in a natural way (seeBadii and Politi (1997, sec.9.5)). Nonetheless,it doesnot attain all
the goals set in Section 2.3.5. Its Markovian predictors are so many black boxes, saying little or nothing
about the hidden states of the process,their causalconnections,or the intrinsic computation carried on by
the process.All of theseproperties are manifest from the � -machine. A productive line of future work would
be to investigate the relationship between hierarchical scaling complexity and computational mechanics,
and to seewhether they can be synthesized. Along these lines, hierarchical scaling complexity is sort of
reminiscent of hierarchical � -machine reconstruction (Crutc h�eld 1994a).

6.9 Con tin uous Dynamical Computing

Using dynamical systems as computers has become increasingly attractiv e over the last ten years or so
among physicists, computer scientists, and others exploring the physical basis of computation (Huberman
1985;Moore 1996;Moore 1998;Orponen 1997;Blum, Shub and Smale1989). Theseproposalshave ranged
from highly abstract ideasabout how to embed Turing machines in discrete-time nonlinear continuousmaps
(Crutc h�eld and Young 1990;Moore 1990) to, more recently , schemesfor specializednumerical computation
that could in principle be implemented in current hardware (Sinha and Ditto 1998). All of them, however,
have been synthetic, in the sensethat they concern designing dynamical systemsthat implement a given
desired computation or family of computations. In contrast, one of the central questionsof computational
mechanics is exactly the converse: given a dynamical system, how can one detect what it is intrinsically
computing?

Having a mathematical basisand a set of tools for answering this questionare important to the synthetic,
engineeringapproach to dynamical computing. Using thesetools we may be able to discover novel forms of
computation embedded in natural processesthat operate at higher speeds,with lessenergy or with fewer
physical degreesof freedomthan currently possible.
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Chapter 7

Transducers with Memory

We watch an ant make his laborious way acrossand wind- and wave-moldedbeach. He moves
ahead,anglesto the right to easehis climb up a steepdunelet, detours around a pebble,stops for
a moment to exchangeinformation with a compatriot. So as not to anthrop omorphizeabout his
purposes,I sketch the path on a pieceof paper. It is a sequenceof irregular, angular segments
| not quite a random walk, for it has an underlying senseof direction, of aiming towards a goal
: : : .

Viewed as a geometric �gure, the ant's path is irregular, complex, hard to describe. But its
complexity is really a complexity in the surfaceof the beach, not a complexity in the ant. On
that samebeach another small creature with a home at the sameplace as the ant might well
follow a very similar path : : : .

The ant, viewedasa behaving system,is quite simple. The apparent complexity of its behavior
over time is largely a re
ection of the complexity of the environment in which it �nds itself.

| Herbert Simon (1996, pp. 51{52)

7.1 In tro duction

The previous chapters have developed the computational mechanics for memorylesstransducersand for time
series.We now \combines our information" to deal with transducerswith memory. The picture is that one
series,called the input, is fed into a transducer, box (or other physical process),resulting in an output series.
This di�ers from the caseof memorylesstransduction becausethe transducer has internal states, and so a
kind of memory for both the past of the input processand its own internal dynamics (which may well be
stochastic). The goal is to be able to identify the internal states of the transducer and their structure of
connection | to �nd the � -transducer.

Put another way: we have two time series,and the future valuesof the output are a stochastic functional
of the history of the input. We want to put this relationship in \transducer form," replacing the stochastic
functional of the serieswith a stochastic function of an internal or hidden state of a transducer, which in turn
is a functional of the history. That is, we want to represent theserelationships by meansof a generalization
of what automata theory calls \�nite state transducers" or \sequential machines" (Moore 1956;Booth 1967;
Hartmanis and Stearns1966;Carroll and Long 1989). We won't assumethat we'll needonly a �nite number
of states.

7.1.1 Notation and Assumptions

Adapting the notation of Chapter 4 in the obvious way, write the stochastic processof the input as
$
X , its

past as
 
X , and its future as

!
X . It takesvalues from the �nite alphabet A . The symbols

$
Y ,

 
Y ,

!
Y, B serve

the samerole for the output process.
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Both input and output valuesare in generalmultidimensional variables, but we don't care about that.

Write the set of all possible input histories as
 
X . Similarly, write

 
Y for the set of all possibleoutput

histories.

7.2 Simplifying the Transducer Problem

It is commonly assumedthat you completely specify a transducer by giving the conditional probabilities of all
�nite-length input-output pairs. That is, you needonly specify P(Yn +1 ; Yn : : : Y1 jX n ; : : : X 0) to completely
specify the behavior of the transducer. I'v e never seena demonstration that this is enough,but it's hard to
seewhat elsethere could be, and in any caseI shall appeal to proof-by-consensus.

Assumeit is true, and factor that conditional probabilit y as follows:

P(
!
Y

L
=

!
y

L � 1
bj

 
X

L
=

 
x

L � 1
a) (7.1)

= P(
!
Y L = bj

!
Y

L � 1
=

!
y

L � 1
;

 
X

L
=

 
x

L � 1
a)P(

!
Y

L � 1
=

!
y

L � 1
j
 
X

L
=

 
x

L � 1
a) (7.2)

= P(
!
Y L = bj

!
Y

L � 1
=

!
y

L � 1
;

 
X

L
=

 
x

L � 1
a)P(

!
Y

L � 1
=

!
y

L � 1
j
 
X

L � 1
=

 
x

L � 1
) (7.3)

In the last line, I assumedthat the future of the input is independent of the past of the output, given the past
of the input. This is true just when there is no feedback from output to input. I'll deal with the feedback
casebelow (Section 7.5).

Clearly, we can repeat this factoring with the last factor, P(
!
Y

L � 1
=

!
y

L � 1
j
 
X

L � 1
=

 
x

L � 1
), since it has

the sameform as our original term. Thus, to get all the conditional probabilities neededfor the transducer,

it is enoughto know all the probabilities of the form P(
!
Y

1
j
 
X

L
;

 
Y

L
). We then build up the probabilities of

output sequencesby multiplying thesenext-output conditional distributions together.1

Reverting to our usual habit of consideringa semi-in�nite history, this meansthat we want conditional

probabilities of the form P(
!
Y

1
j

 
X ;

 
Y ); all the other conditional probabilities we require can be obtained from

this distribution by \marginalizing" the histories down to the needed�nite length. Finding transducer states
reducesto �nding states which \get right" the next output, given the complete input and output histories.

7.3 E�ectiv e Transducer States

The de�nitions of e�ectiv e states,of predictive abilit y and of statistical complexity all transfer in the obvious
way, except that I de�ne alternate states as equivalenceclassesover the joint history of inputs and outputs.
I'll give all thesede�nitions over again for conveniencehere.

De�nition 20 (Join t History) The joint history of a transducer system is the random variable (
 
X ;

 
Y),

which takes valuesfrom the space
 
X �

 
Y . (

 
x ;

 
y ) � (a; b) denotesthe joint history obtained by appending a

to the input history and b to the output history, (
 
x a;

 
y b).

De�nition 21 (E�ectiv e States of Transducers) Transducer e�ective states are equivalence classesof

joint histories. To each classof e�ective statesR there corresponds a function � :
 
X �

 
Y 7! R . The random

variable for the current e�ective state is R, its realizations � .

De�nition 22 (Pr edictive Power for Transduc er E�e ctive States) The predictive power of R is
measured by the entropy of future outputs conditional on the present e�ective state, and the future inputs,

H [
!
Y

L
jR ;

!
X

L � 1
]. R has more predictive power than R 0 i� H [

!
Y

L
jR ;

!
X

L � 1
] < H [

!
Y

L
jR 0;

!
X

L � 1
]

1Conditioning on the output history makes a di�erence i� the transducer has memory and internal stochasticit y.
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I include
!
X

L � 1
in the conditioning variablesbecauseI want to attend only to how well the e�ectiv e states

capture the internal structure of the transducer, and the relation it imposesbetween inputs and outputs,
not how well they do that and predict the future of the input series.

Lemma 14 (The Old Coun try Lemma for Transducers) For all R and all L , H [
!
Y

L
jR ;

!
X

L � 1
] �

H [
!
Y

L
j(

 
X ;

 
Y);

!
X

L � 1
].

Proof. (R;
!
X

L � 1
) = (� ((

 
X ;

 
Y ));

!
X

L � 1
), i.e., the former is a function of the latter. Apply Eq. A.25 and the

lemma follows.

De�nition 23 (Prescience) An e�ective state class bR is prescient i�

H [
!
Y

L
j bR;

!
X

L � 1
] = H [

!
Y

L
j(

 
X ;

 
Y );

!
X

L � 1
]

for all L .

Lemma 15 (Prescience, Su�ciency , and Conditional Indep endence) If an e�ective state class bR
is prescient, then it is a su�cient statistic for predicting the next output from the joint history, and it makes
the next output conditional ly independent of the joint history.

Proof. Prescience) su�ciency: Since H [
!
Y

L
j bR;

!
X

L � 1
] = H [

!
Y

L
j(

 
X ;

 
Y );

!
X

L � 1
], it follows (setting L = 1)

that H [
!
Y

1
j bR] = H [

!
Y

1
j(

 
X ;

 
Y )]. Therefore I [

!
Y

1
; bR ] = I [

!
Y

1
; (

 
X ;

 
Y )], and by Proposition 6, bR is a su�cien t

statistic. Prescience) conditional independence:directly from Lemma 37.
Remark. The argument in the proof can be reversedto show that if an e�ectiv e state classis a su�cien t

statistic, it attains the lower bound of Lemma 14 when L = 1. However, this is not enough to give us
prescience.

7.3.1 Determinism

De�nition 24 (Determinism for State Classes) A class of e�ective states R is deterministic if the
current state and the next input and next output �x the next state. That is, there exists a function g such
that � ((

 
x ;

 
y ) � (a; b)) = g(� ((

 
x ;

 
y )); (a; b)) , 8(a; b) 2 A � B.

Remark. This de�nition of determinism implies that transitions from one state to another happen after
seeingboth a new input and a new output. In the theory of �nite state transducers(Booth 1967), this is a
\Mealy machine", as opposedto a \Mo ore machine," which has a single output for each state, and makes
transitions only on inputs. Translation betweenthe two representations is always possiblefor non-stochastic
transducers,but is sometimesvery awkward. Formulating a \Mo ore" versionof the computational mechanics
of transducers is an interesting exercise,but outside the scope of this book.

Lemma 16 (Equiv alen t Determination Lemma) R is deterministic if and only if

8(
 
x 1;

 
y 1); (

 
x 2;

 
y 2) 2

 
X �

 
Y and

8(a; b) 2 A � B ;

(
 
x 1;

 
y 1)� � (

 
x 2;

 
y 2) ) (

 
x 1;

 
y 1) � (a; b)� � (

 
x 2;

 
y 2) � (a; b) :
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Proof. If the statement about equivalenceis true, then obviously the function invoked by De�nition 24
existsand the statesaredeterministic. I thereforeonly haveto provethat the existenceof the function implies
that the equivalence. Supposeit did not. Then there would exist at least one triple (

 
x 1;

 
y 1); (

 
x 2;

 
y 2); (a; b)

such that

� ((
 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)) and (7.4)

� ((
 
x 1;

 
y 1) � (a; b)) 6= � ((

 
x 2;

 
y 2) � (a; b)) (7.5)

By hypothesis,

� ((
 
x 1;

 
y 1) � (a; b)) = g(� ((

 
x 1;

 
y 1)) ; (a; b)) (7.6)

� ((
 
x 2;

 
y 2) � (a; b)) = g(� ((

 
x 2;

 
y 2)) ; (a; b)) ; (7.7)

so

g(� ((
 
x 1;

 
y 1)) ; (a; b)) 6= g(� ((

 
x 2;

 
y 2)); (a; b)) : (7.8)

But, substituting equalsfor equals,that would mean

g(� ((
 
x 1;

 
y 1)) ; (a; b)) 6= g(� ((

 
x 1;

 
y 1)); (a; b)) ; (7.9)

which is absurd. Therefore there is no such triple, and the promised implication holds. QED.

Lemma 17 (Su�ciency and Determinism Imply Prescience) If R is deterministic and a su�cient

statistic for predicting
!
Y

1
from (

 
X ;

 
Y), then R is prescient.

Proof. By Proposition 6,

I [
!
Y

1
; (

 
X ;

 
Y )] = I [

!
Y

1
; R ] (7.10)

H [
!
Y

1
] � H [

!
Y

1
j(

 
X ;

 
Y )] = H [

!
Y

1
] � H [

!
Y

1
jR ] (7.11)

H [
!
Y

1
j(

 
X ;

 
Y )] = H [

!
Y

1
jR ] : (7.12)

Now, let us consider H [
!
Y

L
jS;

!
X

L � 1
]. Write R 1; R 2; etc., for the present, next, etc., e�ectiv e states. De-

compose the conditional entropy of the future outputs as follows, using the chain rule for entropy (Eq.
A.17).

H [
!
Y

L
jR ;

!
X

L � 1
] =

LX

j =1

H [
!
Y j jR ;

!
X

j � 1
;

!
Y

j � 1
] (7.13)

=
LX

j =1

H [
!
Y j jR j ] (7.14)

=
LX

j =1

H [
!
Y j j(

 
X ;

 
Y ) j ] (7.15)

=
LX

j =1

H [
!
Y j j(

 
X ;

 
Y );

!
X

j � 1
;

!
Y

j � 1
] (7.16)

= H [
!
Y

L
j(

 
X ;

 
Y );

!
X

L
] (7.17)

Eq. 7.14 comesfrom the determinism of the e�ectiv e states. The last line usesthe chain rule again. QED.
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7.4 Causal States

De�nition 25 (T ransducer Causal States) The causal state are the rangeof the function

� ((
 
x ;

 
y )) (7.18)

=
�

(
 
x

0
;

 
y

0
) j8(a; b) 2 A � B; 8b0 2 B

P(
!
Y

1
= bj(

 
X ;

 
Y ) = (

 
x ;

 
y )) = P(

!
Y

1
= bj(

 
X ;

 
Y ) = (

 
x

0
;

 
y

0
))

and P(
!
Y

1
= b0j(

 
X ;

 
Y) = (

 
x ;

 
y ) � (a; b)) = P(

!
Y

1
= b0j(

 
X ;

 
Y ) = (

 
x

0
;

 
y

0
) � (a; b))

�
:

Remark. The secondclauseof the de�nition of � ensuresthat the causalstates are deterministic, which
(as will be seen) is important for much of what follows. It would be very interesting to know necessary
and su�cien t conditions for the secondclauseto be redundant. An obvious su�cien t condition is that the
transducer be memoryless.

Theorem 12 (Mark ov Prop ert y for Transducer Causal States) Given the causalstate at time t, and
the valuesof the input and output seriesfrom time t to time t + L , the causalstate at t + L , SL is independent
of the valuesof the input and output processes,and of the causal state, at times before t, for all positive L .

8L 2
� + ; SL j= (

 
X ;

 
Y )jS;

!
Y

L
;

!
X

L
(7.19)

Proof. Invoke the determinism of the causal states L times to seethat SL is a function of S;
!
Y

L
and

!
X

L
.

Henceit is trivially conditionally independent of everything else. QED.
The Markov property implies that the causal structure of the transduction processtakes a particular,

repetitiv e form, illustrated in Figure 7.1.

Lemma 18 (Su�ciency of the Transducer Causal States) The causal states are su�cient statistics
for predicting the next output from the joint history.

Proof. It is obvious from De�nition 25 that P(
!
Y

1
= bjS = � ((

 
x ;

 
y ))) = P(

!
Y

1
= bj(

 
X ;

 
Y ) = (

 
x ;

 
y )). Hence,

by De�nition 66, they are su�cien t. QED.

Theorem 13 (Prescience of Causal States (T ransducers)) The causal states are prescient.

Proof. From Lemma 18, the causalstatesare su�cien t for the next output. Also, from their de�nition, they
are deterministic. Hence,by Lemma 17, they are prescient. QED.

Lemma 19 (Determined Re�nemen t Lemma) If bR is deterministic class of prescient states, then it
is a re�nement a.e. of S.

Proof. Because bR is prescient, H [
!
Y

1
j bR ] is as small as possible. Hence each cell of the partition must

be at least weakly homogeneousfor
!
Y

1
, otherwise (by the usual Re�nement Lemma argument) it would

mix distributions for
!
Y

1
, raising its conditional entropy. Hence � ((

 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)) implies that

P(
!
Y

1
j(

 
X ;

 
Y ) = (

 
x 1;

 
y 1)) = P(

!
Y

1
j(

 
X ;

 
Y ) = (

 
x 2;

 
y 2)) with probabilit y one. Because bR is (ex hypothesi)

deterministic, the Equivalent Determination Lemma (16) applies. Thus, if � ((
 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)), then

� ((
 
x 1;

 
y 1) � (a; b)) = � ((

 
x 2;

 
y 2) � (a; b)) for all (a; b). But the conjunction of those two conditions propo-

sitions is the proposition that � ((
 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)). Hence, under the hypothesesof the lemma, if

� ((
 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)), then � ((

 
x 1;

 
y 1)) = � ((

 
x 2;

 
y 2)) almost always. Hence bR is a re�nement of S

almost everywhere. QED.
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Input past

X1 S1I1

Output past

Y1

X2I2 S2 Y2

X3I3 S3 Y3

Figure 7.1: Diagram of causal in
uences for a portion of the time evolution of a transducer with memory
but no feedback. The input processmay not be Markovian, so I include the (autonomous) causalstates of
the input process.The absenceof feedback shows up as a lack of causalpaths from the output variables to
future inputs.
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Theorem 14 (T ransducer Causal States Are Minimal) If bR is deterministic classof prescientstates,
then C� ( bR ) � C� (S).

Proof. Entirely parallel to the previous minimalit y theorems,using the Determined Re�nement Lemma
in place of the other re�nement lemmas.

Theorem 15 (Uniqueness of the Transducer Causal States) If bR is a deterministic class of pre-
scient states, and C� ( bR ) = C� (S), then there exists an invertible function f such that S = f ( bR) almost
always.

Proof. Identical to the proof of the uniquenesstheorem for time series.

Theorem 16 (The Transducer Causal States Are Minimally Sto chastic) For any prescient, deter-

ministic rival classof states bR , H [ bR 0j bR;
!
X

1
] � H [S0jS;

!
X

1
], where bR 0 is the next �̂ -state and S0 is the next

causal state.

Proof. Begin by considering the uncertainty in bR 0, given bR and (
!
X

1
;

!
Y

1
), remembering that bR is

deterministic.

H [ bR 0j bR; (
!
X

1
;

!
Y

1
)] = 0 (7.20)

= H [ bR 0;
!
Y

1
j bR;

!
X

1
] � H [

!
Y

1
j bR;

!
X

1
] (7.21)

= H [
!
Y

1
j bR 0; bR;

!
X

1
] + H [ bR 0j bR;

!
X

1
] � H [

!
Y

1
j bR;

!
X

1
] (7.22)

H [ bR 0j bR;
!
X

1
] = H [

!
Y

1
j bR 0; bR;

!
X

1
] � H [

!
Y

1
j bR;

!
X

1
] (7.23)

This applies to the causalstates, too:

H [S0jS;
!
X

1
] = H [

!
Y

1
jS;

!
X

1
] � H [

!
Y

1
jS0; S;

!
X

1
] : (7.24)

Since
!
X

1
happensafter

!
Y

1
, the latter can depend on the former only if they are both dependent on a third

variable. The only such variable available is
 
X . But conditioning on bR makes

!
Y

1
independent of

 
X , so

H [
!
Y

1
j bR;

!
X

1
] = H [

!
Y

1
j bR]. And of courseH [

!
Y

1
j bR ] = H [

!
Y

1
jS]. Bearing this in mind, subtract Eq. 7.24 from

Eq. 7.23.

H [ bR 0j bR;
!
X

1
] � H [S0jS;

!
X

1
]

= H [
!
Y

1
j bR 0; bR ;

!
X

1
] � H [

!
Y

1
j bR ;

!
X

1
] � H [

!
Y

1
jS;

!
X

1
] + H [

!
Y

1
jS0; S;

!
X

1
] (7.25)

= H [
!
Y

1
jS0; S;

!
X

1
] � H [

!
Y

1
j bR 0; bR ;

!
X

1
] (7.26)

By the Determined Re�nement Lemma, S and S0 are functions of bR and bR 0, respectively. HenceS0; S;
!
X

1

is a function of bR 0; bR;
!
X

1
, and by Eq. A.25,

H [
!
Y

1
jS0; S;

!
X

1
] � H [

!
Y

1
j bR 0; bR ;

!
X

1
] (7.27)

H [ bR 0j bR ;
!
X

1
] � H [S0jS;

!
X

1
] � 0 (7.28)

H [ bR 0j bR ;
!
X

1
] � H [S0jS;

!
X

1
] : (7.29)

QED.
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Remark. In the caseof time series,we looked at H [ bR 0j bR ] to gaugethe internal stochasticity of a classof

e�ectiv e states. Here, however, that quantit y = H [ bR 0j bR ;
!
X

1
] + H [

!
X

1
j bR ] � H [

!
X

1
j bR 0; bR]. That is, it involves

the degreeof randomnessin the input process,as well as whatever randomnessis in the internal dynamics
of the transducer. But it would be rather much to expect that the states which predict the behavior of the
transducer nicely are also good predictors of the behavior of the input process.2

7.5 Transduction with Feedback

I assumedabove that the output has no in
uence on the input. This is often true, and it's the classic

transducer problem, but there is no logical necessity for this to be so. If the
 
Y does in
uence

!
X , there's

feedback (and the labels \input" and \output" are dubious). S remains the unique, optimal, minimal class
of states for predicting the future of the output on the basisof the joint history. But we can go through an
entirely parallel construction for predicting the input on the basisof the joint history; call the resulting class
of states F . The causalstructure which results is that of Figure 7.2.

Transducerswithout feedback are simply a special caseof this situation, represented in the diagram by
erasingthe arrows from Yi to F i .

Now, if we consider the input and the output jointly , we have simply another discrete time-series,as in
Chapter 4, so the theory developed there applies. That is, we can construct a classof causalstates (call it
J ) for the joint input-output process.This raisesthe question of how J is related to S and F , bearing in

mind that all three are partitions on
 
X �

 
Y .

We know that
!
Y

1

j= (
 
X ;

 
Y)jS (7.30)

!
X

1

j= (
 
X ;

 
Y)jF : (7.31)

SinceS and F are both functions of (
 
X ;

 
Y), we have (Eq. A.38)

!
Y

1

j= (
 
X ;

 
Y); F jS (7.32)

!
X

1

j= (
 
X ;

 
Y ); SjF : (7.33)

Applying Eq. A.34,

!
Y

1

j= (
 
X ;

 
Y)jS; F (7.34)

!
X

1

j= (
 
X ;

 
Y )jS; F : (7.35)

Furthermore, it's certainly true that

!
Y

1

j= (
 
X ;

 
Y );

!
X

1
jS; F (7.36)

!
X

1

j= (
 
X ;

 
Y );

!
Y

1
jS; F (7.37)

since
!
X

1
has no direct causal e�ect on

!
Y

1
, and any probabilistic dependency there may be is screenedo�

by S and F together. Now Eq. A.33 tells us that

(
!
X

1
;

!
Y

1
) j= (

 
X ;

 
Y)jS; F ; (7.38)

which is to say, the combination of S and F is a su�cien t statistic for joint futures of length 1. Since it is
also deterministic, by Theorem 6, it is a prescient classof states. But then by the Re�nement Lemma for
Time Series(Lemma 12), there is a mapping from S; F to J .

2Note that H [
!
X

1
j �R ] � H [

!
X

1
j �R 0; �R ] = I [

!
X

1
; �R 0j �R ], the mutual information between

!
X

1
and �R 0 conditional on �R .
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Output past

Y1

S1 F1

Input past

X1

X2Y2

S2 F2

X3Y3

S3 F3
Figure 7.2: Diagram of causal e�ects for a transducer with memory and feedback. Observe that all paths
from time i to time i + 1 run through Si or F i .
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7.5.1 An Aside: The Elimination of Dialectics in Favor of Mec hanics

The notion of a dialectical relationship betweentwo entities is a famously murky one (for an unusually lucid
historical account, seeKolakowski (1978, vol. I)). The only reasonably clear account I have found is Phil
Agre's.

A dialectical relationship betweentwo entities, called moments, has three properties: (1) the
moments are engagedin a time-extended interaction, (2) they in
uence each other through this
interaction, and (3) this in
uence hasgrown su�cien tly large that it becomesimpossibleto de�ne
either moment except in terms of its relationship to the other. The moments are typically, though
not necessarily, thought of as being in con
ict with one another; the interaction between them
and their mutual in
uence are products of this con
ict. If this seemsoverly metaphysical : : :
think of it in the following way. Make a list of the states or properties of that the two entities
possessat a given moment. Then take each of the lists in isolation from the other and ask
whether it is possibleto �nd any rhyme or reasonfor that set of states or properties, except by
referenceto the interaction and cumulativ e in
uence that the entit y has gone through. If not,
i.e., if the only reasonableexplanation for each entit y's list makesreferenceto its past history of
interaction with the other entit y, then the relationship between the two entities is dialectical in
nature. (Agre 1997,pp. 318{319)

Put in the languageof computational mechanics, this says that I [
!
Y

L
;

 
Y ] and I [

!
X

L
;

 
X ] are negligible,

while I [
!
Y

L
; (

 
X ;

 
Y)] and I [

!
Y

L
; (

 
X ;

 
Y )] are substantial. There is nothing implausible about that, and in fact

it's just when we're likely to think of the processesas showing feedback. We may, of course,construct the
joint causalstate for the dialectical pair in the usual way. But now something amusing happens.

Supposethat the moments of the dialectical relationship are ordinary piecesof matter. (An insistence
on this point is very much a part of what washistorically the most in
uen tial school of dialectical thinking.)
That being the case, they should obey ordinary statistical mechanics. Then, applying the techniques of
Section 4.5, we can go from the causalpartition of the joint histories, to a partition of the joint phasespace
of the two systems. That partition has the following properties:

1. The partition corresponds to a single observable macroscopicvariable.

2. The dynamics of that variable are Markovian.

3. The current value of the variable is a su�cien t statistic for the entire future of both of the moments.

The evolution of this macrovariable shows no signsof history or of interaction.
The upshot is that, even when it's most reasonableto talk about dialectical relationships, we can al-

ways replace the dialectical representation with a purely (statistical) mechanical one, without any loss of
information.

7.6 Kindred Approac hes

As I said at the beginning of the chapter, the � -transducer is analogousto what computer scientists call a
\�nite state transducer", (De�nition 64). For several decadesat least, however, most treatments of these
objects have beenentirely nonstochastic. (The last detailed treatment of stochastic FSTs I know of is that
of Booth (1967).) So far as I have beenable to learn, nothing like this construction of deterministic states
for stochastic transducers exists in the FST literature. And, again, what I have done in this chapter does
not assumethat only a �nite number of states are needed,or that the memory of the transducer extends
only a �nite distance into the past.

There has beena burst of work on stochastic modelsof discrete transduction in the last few years,driven
by the demandsof bioinformatics (Singer 1997; Apostolico and Bejerano 2000; Eskin, Grundy and Singer
2000). Many of these models even have very nice determinism and Markov properties. The � -transducer
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approach formally incorporatesthem all, and hasthe extra advantagesof not having to postulate the Markov
properties, nor of having to guessthe internal architecture of the states, the onebeing proved and the other
inferred.

Perhaps the best-known theory of nonlinear transducers is that of Norbert Wiener3. This expressesa
nonlinear, deterministic relationship between continuous input and output signals by means of a \p ower
series" of functionals. The nth term in the seriesis the convolution of a kernel with n copiesof the input.
The kernelsare chosen,with extreme cleverness,so that they can be calculated from the cross-correlationof
the input and the output, and moreover sothat, when the input is white noise,all the kernelsare statistically
independent. This theory has actually beenapplied to biological systemswith considerablesuccess(Rieke,
Warland, de Ruyter van Steveninck and Bialek 1997), and can be expanded to accommodate stochastic
transducers(Victor and Johannesma1986).

While Wiener's theory is very elegant, the fact that it usesa seriesexpansionhasits own drawbacks. The
calculation of the higher-order kernelsfrom data, while certainly possible,is not easy, and most applications
truncate the seriesat the �rst or at most the secondterm. There is, however, no reasonto think that the
seriesconvergesquickly, that the �rst two terms are a good approximation to the whole. In fact, it would be
nice if we didn't have to use any sort of seriesat all, and simply calculate all e�ects, linear and nonlinear,
at once. The � -transducer does this, much as the � -machine for a time seriesdoes.

In information theory, one of our transducers is a channel with memory. This is, in a way, unfortunate,
becausethe vastly overwhelming majorit y of information theory is about memorylesschannels, and what
little there is on channelswith memory has concentrated on the channel capacity, the rate at which a signal
can be transmitted without error (Verdu 1994,sec.3). In all modesty, the theory in this chapter may be of
someuseto peopleworking on channelswith memory!

7.7 Reconstruction

The state-splitting algorithm of Chapter 5 can easily be adapted to deal with transducerswithout feedback,
simply by consideringthe joint history, and splitting joint histories when they producesigni�can tly di�eren t
distributions for the next output. The reconstruction of the feedback state would go in the sameway. The
reliabilit y analysis proceedson exactly the samelines as for time series,so I won't redo it here.

3Wiener (1958), the original source, is rewarding but mathematically demanding and full of misprin ts. A much easier
intro duction is to be had from Rieke, Warland, de Ruyter van Steveninck and Bialek (1997, App. A3), while Schetzen (1989)
covers developments up to about 1980.
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Chapter 8

A Very Brief In tro duction to Cellular
Automata

The chess-board is the world; the piecesare the phenomenaof the universe;the rules of the
gameare what we call the laws of Nature.

| T. H. Huxley

8.1 An Extremely Informal Description

Take a board, and divide it up into squares,like a chess-board or checker-board. Theseare the cells. Each
cell hasoneof a �nite number of distinct colors | red and black, say, or (to be patriotic) red, white and blue.
(We don't allow continuous shading, and every cell has just one color.) Now we come to the \automaton"
part. Sitting somewhereto one side of the board is a clock, and every time the clock ticks the colors of the
cells change. Each cell looks at the colors of the nearby cells, and its own color, and then applies a de�nite
rule, the transition rule, speci�ed in advance, to decide its color in the next clock-tick; and all the cells
changeat the sametime. (The rule can sometimestell the cell to stay the same.) Each cell is a sort of very
stupid computer | in the jargon, a �nite-state automaton | and so the whole board is called a cellular
automaton, or CA. To run it, you color the cells in your favorite pattern, start the clock, and stand back.

Now that (I hope) you have a concretepicture, I can get a bit more technical, and more abstract. The
cells don't have to be colored, of course;all that's important is that each cell is in one of a �nite number of
states at any given time. By custom they're written as the integers,starting from 0, but any �nite alphabet
will do. Usually the number of states is small, under ten, but in principle any �nite number is OK. What
counts as the \nearby cells", the neighborhood, varies from automaton to automaton; sometimesjust the
four cellson the principle directions (the von Neumann neighborhood), sometimesthe corner cells(the Moore
neighborhood), sometimesa block or diamond of larger size;in principle any arbitrary shape. You don't need
to stick to a chess-board; you can use any pattern of cells which will �ll the plane (or \tessellate" it; an
old name for cellular automata is \tessellation structures"). And you don't have to stick to the plane; any
integer number of dimensions is allowed. You do need to stick to discrete time, to clock-ticks; but CAs
have cousinsin which time is continuous. There are various tric ks for handling the edgesof the board; the
most common,both of which have \all the advantagesof theft over honest toil" are to have the edges\wrap
around" to touch each other, and to assumean in�nite board.

One important useof CAs is to mimic bits and piecesof the real world. CAs are fully discretizedclassical
�eld theories, so they're good at the same things classical �eld theories are, provided continuit y isn't so
important, and much better at things like messyboundary conditions (Manneville, Boccara, Vichniac and
Bidaux 1990; Chopard and Droz 1998). Their domain of application includes 
uid 
o w (Rothman and
Zaleski 1997),excitable media (Winfree 1987),many other sorts of pattern formation (Cross and Hohenberg
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1993;D'Souza and Margolus 1999), ecosystems(Levin, Powell and Steele1993;Tilman and Kareiva 1997),
highway tra�c, even the development of cities (White and Engelen1993;Clarke, Gaydos and Hoppen 1996;
Manrubia, Zanette and Sole 1999; cf. Anas, Arnott and Small 1998). There's a modest industry of seeing
which typesof CAs have various properties of interest to theoretical physicists | time-reversibilit y, various
sorts of symmetry, etc. (Gutowitz 1991;Smith 1994). There's even a current of thought pushing the idea that
CAs capture something really fundamental about physics, that they are more physical than the di�eren tial
equations we have come to know and love these last three hundred years (To�oli 1984; Margolus 1999). I
can't say I buy this myself, but someof its believersare very smart indeed,and anyway it makesfor excellent
science�ction (Egan 1994).

8.1.1 General References on CAs

The best non-technical intro duction to cellular automata is the book by Poundstone(1984), which describes
in detail the most famousCA of all, Conway's Gameof Life (Berlekamp, Conway and Guy 1982). Flake(1998)
provides a bit more math, and somefun programming projects. Burks (1970) collects foundational papers
from the misty, heroic ageof CA theory, beforethey could be readily simulated and seen on computers. The
standard modern referenceis Gutowitz (1991), but it will probably be supersededby Gri�eath and Moore
(forthcoming), if that ever appears.

Cellular automata were intro ducedby John von Neumann and Stanislaw Ulam in the 1950sto study the
possibility of mechanical self-reproduction (von Neumann 1966;Burks 1970). There is no adequatestudy of
the history of cellular automata.

8.1.2 A More Formal Description

A CA starts with a d-dimensional regular lattice � of sites or cells.1 Each cell x has a neighborhood n(x)
of other cells, de�nitely including those it is connectedto in the lattice, but possibly including others which
are connectedto those; neighborhoods are connectedcomponents of the lattice containing the original cell.
Every cell has the samesize and shape neighborhood as every other cell, i.e., T n(x) = n(T x), where T is
any spatial translation operator. The standard neighborhoods consist of all cells within a certain distance r
of x; r is the rule radius.

A con�gur ation of the lattice (or of the CA) assignsto every cell a value from a �nite alphabet A of size
k. We write the value at x as sx . The con�guration in the neighborhood of x is sn (x ) . Time is discrete and
goesin the subscript: sx

t is the value of the cell x at time t. The global con�guration at time t is st .
The CA rule is a function � from a neighborhood con�guration to a new cell-value.2 The CA's equation

of motion is given by applying the rule to each point separately:

sx
t +1 = � (sn (x )

t ) : (8.1)

The simultaneousapplication of � to all cellsde�nes the global update rule �, a mapping from A � into itself.
Binary (k = 2), r = 1, one-dimensionalCAs are called elementary CAs (ECAs) (Wolfram 1983).
An ensemble operator � can be de�ned (Hanson and Crutch�eld 1992;Wolfram 1984a)that operateson

setsof lattice con�gurations 
 t = f st g:


 t +1 = � 
 t ; (8.2)

such that


 t +1 = f st +1 : st +1 = �( st ); st 2 
 t g : (8.3)

1Sometimes � = �

d, sometimes just a �nite chunk of it.
2 If � is a random function, then we have a stochastic cellular automaton .
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8.2 CA as Dynamical Systems

CA are dynamical systemswith discretetime, i.e., maps. They are a little peculiar, owing to the very discrete
nature of the spacein they live, but many of the familiar conceptsof dynamical systemstheory apply just
�ne.

De�nition 26 (In varian t Set, Fixed Poin t, Transien t) A set of global con�gur ations 
 is invariant i�
� 
 = 
 . If 
 consists of a single con�gur ation s� , then s� is a �xed point . If s is not part of any invariant
set, then it is transient .

De�nition 27 (A ttractor) A set of con�gur ations A is an attractor i�

1. A is invariant; and

2. there is a non-empty set of con�gur ations U such that U \ A = ; but � U � A.

De�nition 28 (Basin of A ttraction) The basin of attraction BA of an attractor A is the largest set of
con�gur ations which are eventually mapped into A, i.e., the collection of all con�gur ations b suchthat b 62A
but � k b 2 A for somepositive integer k.

For explicit computations of the attractor basinsof a large number of one-dimensionalCAs seeWuensche
and Lesser(1992). Someof the pictures are quite prett y, and make nice T-shirts.

There is onecharmingly-named conceptwhich is, sofar asI know, only applied to CAs (among dynamical
systems!).

De�nition 29 (Garden of Eden) A con�gur ation that can only occur as an initial condition is a Garden
of Eden. That is, s is a Garden of Eden i�, 8s0, � s0 6= s.

The existenceof Gardens of Eden has important implications for the computational capacities of cellular
automata, including their abilit y to support self-reproduction (Moore 1970).

All the conceptsI'v e de�ned treat each con�guration as a point in the CA's state space. CA dynamics,
thus de�ned, doesnot represent spatial structure in any explicit or even comprehensibly-implicit way. There
is an alternativ e way of treating a CA as a dynamical system which does, where the state spaceconsists,
somewhatparadoxically, not of individual con�gurations but of setsof con�gurations (Hansonand Crutch�eld
1992; Hanson 1993; Crutch�eld and Hanson 1993b). This alternativ e CA dynamics is, at is happens, the
spatial version of computational mechanics.
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Chapter 9

Domains and Particles: Spatial
Computational Mec hanics

People notice patterns when they look at CAs, though whether this says more about what CA are apt to
do, or what people like to look at, is a nice question. Two very common kinds of patterns noted in CAs
are domains | patches of space-timewhere everything looks the same,where some\texture" is repeated
over and over | and particles, localizedblobuleswhich propagateacrossthe lattice (Hanson and Crutch�eld
1992). A review of the literature indicates that particles are generally felt to be about the most interesting
things in CAs 1. Part of the reasonfor this is that propagating blobulesare observed in real physical systems,
wherethey canbe very important (Manneville 1990;Crossand Hohenberg 1993;Winfree 1980;Winfree 1987;
Fedorova and Zeitlin 2000; Infeld and Rowlands 1990). Sometimes,especially in condensedmatter physics,
they are called \defects," but somepeople (and �elds) prefer more P.C. names,like \coherent structures,"
\solitons" or \organizing centers". An analogy with Conway's Game of Life (Poundstone1984) gives them
the name \gliders," which I'll avoid2. Many people have long suspected that particles and domains are
emergent structures. A general theoretical analysis (Hanson 1993), supplemented by a comparatively small
number of explicit calculations in particular cases(Hanson and Crutch�eld 1997) shows that this is true.

The burden of this chapter is to expound the theory I just mentioned, the \pure-space" computational
mechanics of cellular automata of Hanson and Crutch�eld. This is a method for analyzing particles and
domains in one-dimensionalCAs in terms of regular languagesand the states of machines associated with
them.3 The theory employs causal states that specify only the spatial structure of CA con�gurations,
obtained by treating one axis of the CA lattice as though it were the time axis. Problems about CA
dynamics can be posedin the theory, and indeed it has somevery powerful tools for solving such problems,
but dynamics are described by the CA ensemble evolution operator � of the previous chapter, and further
objects constructed from it, and not in terms of causal states. It also only works in one dimension, since
both the automata theory and the machine-reconstruction techniques it employs apply only to well-ordered
sequencesof symbols. Within theselimits, however, spatial computational mechanics is extremely powerful,
and proved essential, for instance, in understanding how computation can be embeddedin cellular automata,
and even evolve Darwinianly in them (Das, Mitc hell and Crutch�eld 1994; Das 1996; Crutch�eld, Hordijk
and Mitc hell 2000b; Crutch�eld and Mitc hell 1995; Hordijk, Mitc hell and Crutch�eld 1998; Hordijk 1999).

1A very partial list would include: Burks 1970; Berlekamp, Conway and Guy 1982; Peyrard and Krusk al 1984; Grassberger
1983; Boccara, Nasser and Roger 1991; Boccara and Roger 1991; Boccara 1993; Aizawa, Nishik awa and Kaneko 1991; Park,
Steiglitz and Th urston 1986; Wolfram 1986; Wolfram 1994; Lindgren and Nordahl 1990; Crutc h�eld and Mitc hell 1995; Yunes
1994; Eloran ta 1993; Eloran ta 1994; Eloran ta and Nummelin 1992; Manneville, Boccara, Vic hniac and Bidaux 1990; Andre,
Bennett and Koza 1997; Hanson and Crutc h�eld 1992; Hanson 1993; Hanson and Crutc h�eld 1997; Eppstein ongoing.

2A particle, in this sense, is not the same as a particle in the senseof interacting particle systems (IPSs) (Gri�eath 1979;
Liggett 1985) or lattice gases(Rothman and Zaleski 1997). The particles of an IPS or the coherent structures that emerge in
lattice gasesmay be particles this sense,however.

3Regular languages and automata are explained in App endix A.4.
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The next chapter constructs a fully spatio-temporal, multi-dimensional computational mechanics,containing
one-dimensionalspatial computational mechanics as a special case; the rest of this chapter expounds the
basics,and a particular application, of the latter theory, to give an idea of what can be accomplishedeven
without the full dynamical treatment.

9.1 Domains

De�nition 30 (Domain) (Hanson and Crutch�eld 1992) A regular domain � of a CA � is a process
language,representinga set of spatial lattice con�gur ations, with the following properties:

1. Temporal invariance (or periodicity): � is mapped onto itself by the CA dynamic; i.e., � p � = � for
some �nite p. (Recall that � takes sets of lattice con�gur ations into sets of con�gur ations and that a
formal language,such as � , is a set of con�gur ations.)

2. Spatial homogeneity: The processgraph of each temporal iterate of � is strongly connected. That is,
there is a path between every pair of states in M (� l �) for all l . (Recall that M (L ) is the minimal DFA
which recognizesthe languageL .)

The set of all domains of a CA � is denoted � = f � 0; � 1; : : : ; � m � 1g, where m = j� j.

According to the �rst property | temporal invariance or periodicit y | a particular domain � i consists
of p temporal phasesfor somep � 1; i.e., � i = f � i

0; � i
1; : : : ; � i

p� 1g, such that � l � i
j = � i

( j + l ) mo dp . Here p is
the temporal periodicity of the domain � i , denoted T(� i ).

Each of the temporal phases� i
j of a domain � i is represented by a processgraph M (� i

j ) which, according
to the secondproperty (spatial homogeneity), is strongly connected. Each of theseprocessgraphsconsistsof
a �nite number of states. Denote the k t h state of the j t h phaseof � i by � i

j;k , suppressingthe M (�) notation
for conciseness.Write the number of states in a given phaseas S(� i

j ).
The processgraphsof all temporal phases� i

j of all domains� i canbeconnectedtogether and transformed
into a �nite-state transducer, called the domain transducer, that readsin a spatial con�guration and outputs
various kinds of information about the sites. (The construction is given in, for example, Crutch�eld and
Hanson(1993b).) Variations on this transducer can do useful recognition tasks. For example,all transitions
that were in domain � i

j 's processgraph are assignedoutput symbol D , indicating that the input symbol
being read is \participating" in a domain. All other transitions in the transducer indicate deviations from
the sites being in a domain. They can be assigneda unique output (\w all") symbol w 2 f W i

j g that labels
the kind of domain violation that has occurred. The resulting domain transducer can now be used to �lter
CA lattice con�guration, mapping all domain regularities to D and mapping all domain violations to output
symbols w that indicate domain walls of various kinds.

I'll call a phaseof a domain (spatially) periodic when the processgraph consistsof a periodic chain of
states, with a single transition between successive states in the chain. That is, as one moves from state
to state, an exactly periodic sequenceof states is encountered and an exactly periodic sequenceof symbols
from � is encountered on the transitions. The spatial periodicity of a periodic phase is simply S(� i ). I'll
call a domain periodic when all its phasesare periodic. We'll only deal with periodic domains here, for the
following reason. It turns out that for such domains all of the spatial periodicities S(� i

j ) at each temporal
phaseare equal. Thus, we can speak of the spatial periodicit y S(� i ) of a periodic domain � i . This property,
in turn, is central to the proof of the upper bound on the number of particle interaction products.

Lemma 20 (P erio dic Phase Implies Perio dic Domain) If a domain � i has a periodic phase,then the
domain is periodic, and the spatial periodicities S(� i

j ) of all its phases� i
j ; j = 0; : : : ; p � 1; are equal.

Proof. Seethe Appendix.
Thus, the number of states in the processgraph representing a particular temporal phase� i

j is the same
for all j 2 f 1; : : : ; T (� i )g, and it is, in fact, S(� i ).
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Finally, there is a larger classof cyclic domainswhoseprocessgraphsconsistof a periodic chain of states:
as one movesfrom state to state an exactly periodic sequenceof states is seen.Note that this classincludes
more than periodic domains,which are obviously cyclic. It includesdomainsin which betweentwo successive
states in the chain there are multiple transitions over �. (SeeCrutch�eld and Hanson (1993b) for a CA
exhibiting two such cyclic domains.) Basedon our experiencewe conjecture that Lemma 20 also holds for
cyclic domains. If this is so,most of the following results, and in particular the upper bound theorem, would
hold for this larger class.

Conjecture 1 (Spatial Perio dicities of Cyclic Domains) For any cyclic domain � i , the spatial peri-
odicities S(� i

j ) of all its phases� i
j ; j = 0; : : : ; p � 1; are equal.

9.2 Particles

When domain violations form a spatially localized(�nite width), temporally periodic boundary betweentwo
adjacent domains, they are called particles.

De�nition 31 A particle � is a set f � 0; � 1; : : : ; � p� 1g of �nite-width words � j over � � , called wedges, such
that

� (� � i � 0) = � � ( i +1) mo dp� 0 ; (9.1)

for some�nite p and � and � 0 2 � .

Sincea particle is a bounded structure, it doesnot have a spatial periodicit y. \P eriodicit y of a particle"
therefore always meanstemporal periodicit y.

Since these particles are temporally periodic, we can view the appearanceof wedge� j as the particle
being in it's j th phase. The kth symbol in the wedge'sword is denoted � j

k . The state in which the domain
transducer �nds itself after reading the kth symbol � j

k in the wedge� j is denoted q(� j
k ).

Now I'll intro duce an important but subtle distinction. The particle period p referred to above | the
surface periodicity | is associated with the repetition over time of the wedge words as observed in the
raw space-timebehavior s0; s1; s2; : : : . It turns out, as will becomeclear, that particles have an internal
periodicit y that may be somemultiple of the surfaceperiodicit y p. The internal periodicit y | the one of
actual interest here | though, is the periodicit y seenby the various phasesof the bordering domains.

De�nition 32 A particle � 's intrinsic periodicit y P(� ) is the periodicity of the set of transducer-state se-
quences generated when reading a particle's wedges. For wedge � j = � j

0 : : : � j
n the state sequence q(� j

0) : : :
q(� j

n ) is generated in the transducer. Denote this state sequence by q(� j ). P(� ), then, is the number of
iterations over which the sequence q(� j ) reappears.

Remark 1. P(� ) is an integer multiple of � 's apparent periodicit y.
Remark 2. A simple illustration of the need for intrinsic, as opposed to merely surface, periodicit y is

provided by the 
 particles of ECA 54. SeeFigure 9.4(b) and the accompanying text in Section 9.5.1.
After one period P(� ), a particle � will have moved a number d� of sites in the CA lattice. This shift

d� in spaceafter one period is called the particle's displacement. d� is negative for displacements to the left
and positive for displacements to the right. From the particle's periodicit y P(� ) and displacement d� , its
averagevelocity is simply v� = d� =P(� ).

It doesn't matter whether you look at the wedges,or at the transducer-state labeledwedges,the velocity
is the same.

The set of all particles �; � ; : : : of a CA � is denoted by P.
Remark 3. We've just de�ned temporally periodic particles. There are particles in CAs, such as in ECA

18, which are temporally aperiodic. In this case,one replacesthe periodicit y condition Eq. 9.1 by one using
the ensemble operator; viz.,

� p(� � � 0) = � � � 0 : (9.2)
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9.2.1 Structural Complexit y of a Particle

The precedingde�nitions and discussionsuggestthat one can think of particles as having an internal clock
or, in the more general casethat includes aperiodic particles, an internal state, much as the solitary-wave
solutions of continuum envelope equations have internal states (Infeld and Rowlands 1990). One can ask
about how much information a particle storesin its states. This is the amount of information that a particle
transports acrossspaceand time and brings to interactions. These considerations lead one to a natural
measureof the amount of structural complexity associated with individual particles.

De�nition 33 The structural complexity C(� ) of a particle � is de�ned to be

C(� ) = �
p� 1X

j =0

Pr(q(� j )) log2 Pr(q(� j )) ; (9.3)

where p is � 's period and Pr(q(� j )) is the probabilit y of � being in phase� j with the state-sequenceq(� j ).
Remark 1. For the straightforward caseof periodic particles, in which the wedgesand so their associated

state sequencesare equally probable,

C(� ) = log2 P(� ) : (9.4)

Remark 2. The information available to be processedin particle interactions is upper-bounded by the
sum of the individual particle complexities, since this sum assumesindependenceof the particles. As we'll
seeshortly, the information in one particle, conditioned on the other's phase(via the constraints imposed
by the mediating domain) and suitably averaged, determines the information available for processingby
interactions.

9.2.2 Domain Transducer View of Particle Phases

A particle is bounded on either side by two patches of domain. (They could be patches of the same or
di�eren t domains.) Consider what happens to the domain transducer as it scansacross the part of the
lattice containing the bounding domains (� i and � i 0

) and the particle (� ). It beginsby cycling through the
statesof the processgraph of a phase(j ) of the �rst bounding domain (� i ). It then encounters a symbol that
doesnot belong to the languageof that domain phase,and this then causesa transition out of that process
graph. Each successivesymbol of the particle wedgeleadsto additional transitions in the transducer. Finally,
the transducer reaches cells at the beginning of the other bounding domain (� i 0

), whereupon it begins to
follow the processgraph of � i 0

j 0 at someappropriate phasej 0. In this way, a particle wedge� j corresponds
to a sequenceq(� j ) of transducer states.

More formally, the transducer maps a particle wedge� j , bordered by � i
j and � i 0

j 0, to an ordered n� tuple
(n = j� j j + 2) of states

Q(� j ) =
D

q(� i
j;k ); q(� j ); q(� i 0

j 0;k 0)
E

; (9.5)

where q(� i
j;k ) is the transducer state reach on reading symbol � i

j;k . Since the transducer-state sequence
is determined by the bounding domain phasesand the actual wedge� j , it follows that the mapping from
particle wedgesto state sequencesis 1-1. If two particle wedgescorrespond to the samesequenceof states,
then they are the samephaseof the sameparticle, and vice versa.

This representation of particle phaseswill prove very handy below.

9.3 In teractions

In many CAs, when two or more particles collide they create another set of particles or mutually annihilate.
Such particle interactions are denoted � + � ! 
 , for example. This meansthat the collision of an � particle
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Figure 9.1: Interactions betweenan � and a � particle with domain � lying between.

on the left and a � particle on the right leadsto the creation of a 
 particle. Particle annihilation is denoted
� + � ! ; . There are also unstable walls that can spontaneously decay into particles. This is denoted
� ! � + 
 , for example.

Often, the actual product of a particle interaction dependson the phases� j and � k in which the inter-
acting particles are at the time of collision. In such a case,there can be more than one interaction product
for a particular collision: e.g., both � + � ! 
 and � + � ! ; can be observed.

The set of a CA's possibleparticle interactions is denoted I . The complete information about a CA's
domains � , particles P, and particle interactions I can be summarized in a particle catalog. The catalog
forms a high-level description of the CA's dynamics. It is high-level in the senseof capturing the dynamics
of emergent structures. The latter are objects on a more abstract level than the original equationsof motion
and raw (uninterpreted) spatial con�gurations of site values.

9.4 Bounding the Num ber of In teraction Pro ducts

Restricting ourselves to particle interactions with just two colliding particles | � and � , say | we'll now
derive an upper bound on the number n �;� of possibleinteraction products from a collision betweenthem.
(See Figure 9.1 for the interaction geometry.) In terms of the quantities just de�ned, the upper bound,
stated as Theorem 17 below, is:

n�;� �
P(� )P(� )� v
T(� i )S(� i )

; (9.6)

where � v = v� � v� > 0 and � i is the domain in betweenthe two particles before they collide. Note that if
� v = 0, then n�;� = 0 trivially .

For simplicit y, let's assumethat � v = v� � v� � 0. This simply meansthat particle � lies to the left of
� and they move closer to each other over time, as in Figure 9.1.

This section proves that Eq. 9.6 is indeed a proper upper bound. The next section gives a number of
examples,of both simple and complicated CAs, that show the bound is and is not attained. Thesehighlight
an important distinction between the number of possible interactions (i.e., what can enter the interaction
region) and the number of unique interaction products (i.e., what actually leavesthe interaction region).

To establish the bound, we'll need some intermediate results. The �rst three come from elementary
number theory. Recall that the least common multiple lcm(a; b) of two integers a and b is the smallest
number c that is a multiple of both a and b. Similarly, the greatest common divisor gcd(a; b) of two integers
a and b is the largest number c that divides both a and b.
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Prop osition 1 (Burton 1976, Theorem 2.7) gcd(ca;cb) = c gcd(a; b); c > 0.

Prop osition 2 (Burton 1976, Theorem 2.8) gcd(a; b) lcm(a; b) = ab.

Lemma 21 lcm(ca;cb) = c lcm(a; b); c > 0.

Proof. Using Propositions 1 and 2, it follows that

lcm(ca;cb) =
cacb

gcd(ca;cb)
(9.7)

= c
ab

gcd(a; b)
= c lcm(a; b) :

QED.
Now we can start talking about particles.

Lemma 22 (Particle Perio dicity Is a Multiple of Domain Perio dicity) The intrinsic periodicity
P(� ) of a particle � is a multiple of the temporal periodicity T(� i ) of either domain � i for which � is a
boundary. That is,

P(� ) = m�i T(� i ) ; (9.8)

for somepositive integer m �i that depends on � and � i .

Proof. At any given time, a con�guration containing the particle � consistsof a patch of the domain � i ,
a wedgebelonging to � , and then a patch of � i 0

, in that order from left to right. (Or right to left, if that
is the chosenscan direction.) Fix the phaseof � to be whatever you like | � l , say. This determines the
phasesof � i , for the following reason. Recall that, being a phaseof a particle, � l corresponds to a unique
sequenceQ(� l ) of transitions in the domain transducer. That sequencestarts in a particular domain-phase
state � i

j;k and endsin another domain-phasestate � i 0

j 0;k 0. So, the particle phase� l occursonly at thosetimes
when � i is in its j th phase. Thus, the temporal periodicit y of � must be an integer multiple of the temporal
periodicit y of � i . By symmetry, the sameis also true for the domain � i 0

to the right of the wedge. QED.

Corollary 5 (Phase Restriction) Given that the domain � i is in phase� i
j at sometime step, a particle

� forming a boundary of � i can only be in a fraction 1=T(� i ) of its P(� ) phasesat that time.

Proof. This follows directly from Lemma 22.
Remark. Here is the �rst part of the promised restriction on the information in multiple particles.

Consider two particles � and � , separatedby a domain � 0. Naively, we expect � to contain log2 P(� ) bits of
information and � , log2 P(� ) bits. Given the phaseof � , however, the phaseof � 0 is �xed, and therefore the
number of possiblephasesfor � is reducedby a factor of 1=T(� 0). Thus the number of bits of information
in the � -� pair is at most

log2 P(� ) + log2 P(� ) � log2 T(� 0) = log2
P(� )P(� )

T (� 0)
: (9.9)

The argument works equally well starting from � .

Lemma 23 For any two particles � and � , the quantity lcm(P(� ); P(� ))� v is a non-negative integer.
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Proof. We know that the quantit y is non-negative, since the least common multiple always is and � v is so
by construction. It remains to show that their product is an integer. Let k� = lcm(P(� ); P(� ))=P(� ) and
k� = lcm(P(� ); P(� ))=P(� ); theseare integers. Then

� v �
d�

P(� )
�

d�

P(� )

=
k� d� � k� d�

lcm(P(� ); P(� ))
:

When multiplied by lcm(P(� ); P(� )) this is just k� d� � k� d� , which is an integer. QED.

Lemma 24 (Displacemen ts Preserving Relativ e Phase) When the distance d between two approach-
ing particles � and � , in phases� j and � j 0

, respectively, is increased by lcm(P(� ); P(� ))� v sites, the original
con�gur ation | distance d and phases� j and � j 0

| recurs after lcm(P(� ); P(� )) time steps.

Proof. From the de�nition of lcm(a; b) it follows directly that lcm(P(� ); P(� )) is a multiple of P(� ). Thus,

� ( j +lcm( P ( � ) ;P ( � ))) mo dP ( � ) = � j ; (9.10)

and the � particle has returned to its original phase. Exactly parallel reasoningholds for the � particle. So,
after lcm(P(� ); P(� )) time steps both � and � are in the samephases� j and � j 0

again. Furthermore, in
the sameamount of time the distance between the two particles has decreasedby lcm(p� ; p� )� v, which is
the amount by which the original distance d was increased. (By Lemma 23, that distance is an integer, and
sowe can meaningfully increasethe particles' separationby this amount.) Thus, after lcm(P(� ); P(� )) time
stepsthe original con�guration is restored. QED.

Lemma 25 (Phase-Preserving Displacemen ts and Spatial Perio dicit y) If � i is the domain lying
between two particles � and � , then the ratio

r =
lcm(P(� ); P(� ))� v

S(� i )
(9.11)

is an integer.

Proof. Suppose,without lossof generality, that the particles begin in phases� 0 and � 0, at somesubstantial
distance from each other. We know from the previous lemma that after a time lcm(P(� ); P(� )) they will
have returned to those phasesand narrowed the distance between each other by lcm(P(� ); P(� ))� v cells.
What the lemma assertsis that this displacement is someinteger multiple of the spatial periodicit y of the
intervening domain � i . Call the �nal distance between the particles d. Note that the following does not
depend on what d happens to be.

Each phaseof each particle correspondsto a particular sequenceof transducer states | those associated
with reading the particle's wedgefor that phase. Reading this wedgefrom left to right (say), we know that
Q(� 0) must end in some phase-stateof the domain � i ; call it � i

0;0. Similarly, Q(� 0) must begin with a
phase-stateof � i , but, sinceevery part of the intervening domain is in the samephase,this must be a state
of the same phase� i

0; call it � i
0;k . In particular, consistencyrequires that k be the distance between the

particles modulo S(� i ). But this is true both in the �nal con�guration, when the separation between the
particles is d, and in the initial con�guration, when it is d + lcm(P(� ); P(� ))� v. Therefore

d + lcm(P(� ); P(� ))� v = d (mod S(� i ))

lcm(P(� ); P(� ))� v = 0 (mod S(� i )) :

Thus, lcm(P(� ); P(� ))� v is an integer multiple of the spatial period S(� i ) of the intervening domain � i .
QED.



76

Remark. It is possiblethat lcm(P(� ); P(� ))� v = 0, but this does not a�ect the subsequent argument.
Note that if this is the case,then, since the least common multiple of the periods is at least 1, � v = 0.
This, in turn, implies that the particles do not, in fact, collide and interact, and so the number of interaction
products is simply zero. The formula givesthe proper result in this case.

The next result follows easily from Proposition 1 and Lemma 22.

Lemma 26 (Relation of the Perio ds of Particles Bounding a Common Domain) If � i is the do-
main lying between particles � and � , then

gcd(P(� ); P(� )) = T(� i ) gcd(m�i ; m� i ) : (9.12)

Proof. Apply Lemma 21:

gcd(P(� ); P(� )) = gcd(m �i T(� i ); m� i T(� i )

= T(� i ) gcd(m�i ; m� i ):

QED.
With the above lemmasthe following theorem can be proved,establishingan upper bound on the number

of possibleparticle interaction products.

Theorem 17 (Hordijk's Rule) The number n �;� of products of an interaction between two approaching
particles � and � with a domain � i lying between is at most

n�;� �
P(� )P(� )� v
T(� i )S(� i )

: (9.13)

Proof. First, let's show that this quantit y is an integer. Use Proposition 2 to get

P(� )P(� )� v
T(� i )S(� i )

=
gcd(P(� ); P(� ))lcm(P(� ); P(� ))� v

T(� i )S(� i )
; (9.14)

and then Lemma 25 to �nd that

P(� )P(� )� v
T(� i )S(� i )

=
gcd(P(� ); P(� )) r

T (� i )
; (9.15)

and �nally Lemma 26 to show that

P(� )P(� )� v
T(� i )S(� i )

=
T(� i ) gcd(m�i ; m� i )r

T (� i )
= r gcd(m�i ; m� i ) ; (9.16)

which is an integer.
Second,assumethat, at someinitial time t, the two particles are in somearbitrary phases� j and � j 0

,
respectively, and that the distance between them is d cells. This con�guration gives rise to a particular
particle-phase combination at the time of collision. Since the global update function is deterministic, the
combination, in turn, givesone and only one interaction result. Now, increasethe distance betweenthe two
particles, at time t, by onecell, while keepingtheir phases�xed. This givesrise to a di�eren t particle-phase
combination at the time of collision and, thus, possibly to a di�eren t interaction result. We can repeat this
operation of increasingthe distance by one cell lcm(P(� ); P(� ))� v times. At that point, however, we know
from Lemma 24 that after lcm(P(� ); P(� )) time steps the particles �nd themselvesagain in phases� j and
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� j 0
at a separation of d. That is, they are in exactly the original con�guration and their interaction will

therefore also produce the original product, whatever it was.
Starting the two particles in phases� j and � j 0

, the particles go through a fraction 1=gcd(P(� ); P(� ))
of the possibleP(� )P(� ) phasecombinations, over lcm(p� ; p� ) time steps,before they start repeating their
phasesagain. So, the operation of increasing the distance between the two particles by one cell at a time
needsto be repeated for gcd(P(� ); P(� )) di�eren t initial phasecombinations. This way all possiblephase
combinations with all possibledistances(modulo lcm(P(� ); P(� ))� v) are encountered. Each of these can
give rise to a di�eren t interaction result.

From this one seesthat there are at most

gcd(P(� ); P(� ))lcm(P(� ); P(� ))� v = P(� )P(� )� v (9.17)

unique particle-domain-particle con�gurations. And so, there are at most this many di�eren t particle inter-
action products, given that � is many-to-one. (Restricted to the homogeneous,quiescent (� = 0� ) domain
which has T(�) = 1 and S(�) = 1, this is the result, though not the argument, of Park, Steiglitz and
Thurston (1986).)

However, given the phases� j and � j 0
, the distance betweenthe two particles cannot always be increased

by an arbitrary number of cells. Keeping the particle phases� j and � j 0
�xed, the amount � d by which the

distancebetweenthe two particles can be increasedor decreasedis a multiple of the spatial periodicit y S(� i )
of the intervening domain. The argument for this is similar to that in the proof of Lemma 25. Consequently ,
of the lcm(P(� ); P(� ))� v increasesin distancebetweenthe two particles, only a fraction 1=S(� i ) areactually
possible.

Furthermore, and similarly, not all arbitrary particle-phasecombinations are allowed. Choosing a phase
� j for the � particle subsequently determinesthe phase� i

j of the domain � i for which � forms oneboundary.
From Corollary 5 it then follows that only a fraction 1=T(� i ) of the P(� ) phasesarepossiblefor the � particle
which forms the other boundary of � i .

Adjusting the number of possibleparticle-domain-particle con�gurations that can give rise to di�eren t
interaction products according to the above two observations results in a total number

P(� )P(� )� v
T(� i )S(� i )

(9.18)

of di�eren t particle-phase combinations and distancesbetween two particles � and � . Putting the pieces
together, then, this number is an upper bound on the number n �;� of di�eren t interaction products. QED.

Remark 1. As we'll seein the examples,on the one hand, the upper bound is strict, sinceit is saturated
by someinteractions. On the other hand, there are also interactions that do not saturate it.

Remark 2. We saw (Corollary 5, Remark) that the information in a pair of particles � and � , separated
by a patch of domain � i , is at most

log2
P(� )P(� )

T (� i )
(9.19)

bits. In fact, Hordijk's Rule implies a stronger restriction. The amount of information the interaction carries
about its inputs is, at most, log2 n�;� bits, since there are only n �;� con�gurations of the particles that can
lead to distinct outcomes. If the number of outcomesis lessthan n �;� , the interaction e�ectiv ely performs
an irreversible logical operation on the information contained in the input particle phases.

Remark 3. This is \Hordijk's Rule" becauseWim Hordijk was the �rst personto notice that, empirically,
it was valid, and to use it in analyzing cellular automata. This proof is joint work with Wim and Jim
Crutch�eld.
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9.5 Examples

9.5.1 ECA 54 and In trinsic Perio dicit y

Figure 9.2 shows the raw and domain-transducer �ltered space-timediagrams of ECA 54, starting from a
random initial con�guration. First, let's review the results of Hanson and Crutch�eld (1997) for ECA 54's
particle dynamics.

Figure 9.3 shows a space-timepatch of ECA 54's dominant domain �, along with the domain transducer
constructed to recognizeand �lter it out, as was done to produce Figure 9.2(b).

Examining Figure 9.2 shows that there are four particles, called � , � , 
 + , and 
 � . The �rst two have
zero velocity; they are the larger particles seenin Figure 9.2(b). The 
 particles have velocities 1 and � 1,
respectively. They are seenin the �gure as the diagonally moving \ligh t" particles that mediate betweenthe
\heavy" � and � particles.

The analysisin Hansonand Crutch�eld (1997) identi�ed 7 dominant two- and three-particle interactions.
Let's now analyzejust one: the 
 + + 
 � ! � interaction to illustrate the importance of a particle's intrinsic
periodicit y.

Naive analysiswould simply look at the space-timediagram, either the raw or �ltered onesin Figure 9.2,
and conclude that these particles had periodicities P(
 + ) = P(
 � ) = 1. Plugging this and the other data
| T (�) = 2, S(�) = 4, and � v = 2 | leads to upper bound n �;� = 1=4! This is patently wrong; it's not
even an integer.

Figure 9.4 givesthe transducer-�ltered space-timediagram for the 
 + and 
 � particles. The domain � is
�ltered out, as above. In the �ltered diagrams the transducer state reached on scanningthe particle wedge
cells is indicated.

From the space-timediagrams of Figure 9.4(b) one notes that the transducer-state labeled wedgesfor
each particle indicate that their intrinsic periodicities are P(
 + ) = 2 and P(
 � ) = 2. Then, from Theorem
17, n�;� = 1. That is, there is at most one product of theseparticles' interaction.

Figure 9.5 givesthe transducer-�ltered space-timediagram for the 
 + + 
 � ! � interaction. A complete
survey of all possible
 + � 
 � initial particle con�gurations shows that this is the only interaction for these
particles. Thus, the upper bound is saturated.

9.5.2 An Evolv ed CA

The secondexample for which we test the upper bound is a CA that was evolved by a genetic algorithm to
perform a classof spatial computations: from all random initial con�gurations, synchronizewithin a speci�ed
number of iterations. This CA is � sy nc 1 of Hordijk, Mitc hell and Crutch�eld (1998): a binary, radius-3 CA.
The 128-bit look-up table for � sy nc 1 is given in Table 9.1.

Here we're only interested in locally analyzing the various pairwise particle interactions observed in
� sy nc 1 . It turned out that this CA used a relatively simple set of domains, particles, and interactions. Its
particle catalog is given in Table 9.2.

As one example, the two particles � and � and the intervening domain � have the properties given in
Table 9.2. From this data, Theorem 17 tells us that there is at most one interaction product:

n�;� =
4 � 2 � 1

4

2 � 1
= 1 : (9.20)

The single observed interaction betweenthe � and � particles is shown in Figure 9.6. As this space-time
diagram shows, the interaction createsanother � particle, i.e., � + � ! � . An exhaustive survey of the 8
(= 4� 2) possibleparticle-phasecon�gurations shows that this is the only interaction for thesetwo particles.
Thus, in this case,Hordijk's Rule again givesa tight bound; it cannot be reduced.
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Figure 9.2: (a) Raw space-timediagram and (b) �ltered space-timediagram of ECA 54 behavior starting
from an arbitrary initial con�guration. After Hanson and Crutch�eld (1997).
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Figure 9.3: (a) Space-timepatch of ECA54's primary domain �. (b) The transducer that recognizes� and
deviations from it. After Hanson and Crutch�eld (1997).

� Look-up Table (hexadecimal)
� sy nc 1 F8A19CE6B65848EA

D26CB24AEB51C4A0
� par ent CEB2EF28C68D2A04

E341FAE2E7187AE8

Table 9.1: Lookup tables (in hexadecimal) for � sy nc 1 and � par ent . To recover the 128-bit string giving the
CA look-up table output bits st +1 , expand each hexadecimaldigit (the �rst row followed by the secondrow)
to binary. The output bits st +1 are then given in lexicographic order starting from the all-0s neighborhood
at the leftmost bit in the 128-bit string.
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Figure 9.4: The transducer-�ltered space-timediagramsfor the 
 + and 
 � particles. (a) The raw space-time
patchescontaining the particles. (b) The samepatcheswith the � �ltered out. The cellsnot in � are denoted
in black; those in � in white. In the �ltered diagrams the transducer state reached on scanningthe particle
wedgecells is indicated. After Hanson and Crutch�eld (1997).

Figure 9.5: The transducer-�ltered space-timediagramsfor the 
 + + 
 � ! � interaction. After Hansonand
Crutch�eld (1997).
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� sy nc 1 Particle Catalog
Domains �

Name Regular language T(�) S(�)
� 040� , 141� 2 1

Particles P
Name Wall P d v

� � j � j 4 -1 -1/4
� � j � 1� j 2 -1 -1/2

 � j � j 8 -1 -1/8
� � j � j 2 0 0

In teractions I
Type Interaction Interaction
React � + � ! � 
 + � ! �
React � + � ! � 
 + � ! �
React � + � ! � � + 
 ! �

Table 9.2: The particle catalog of � sy nc 1 . � j , j 2 f 0; 1g, indicates the two temporal phasesof domain �.

Figure 9.6: The interaction betweenan � and a � particle in � sy nc 1 .
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� par ent Particle Prop erties
Domain T S

� 2 1
Particle P d v

� 8 2 1/4
� 2 -3 -3/2

Table 9.3: Properties of two of � par ent 's particles.

9.5.3 Another Evolv ed CA

The third, more complicated example is also a CA that was evolved by a genetic algorithm to synchronize.
This CA is � par ent of Crutch�eld, Hordijk and Mitc hell (2000b). It too is a binary radius-3 CA. The 128-bit
look-up table for � par ent was given in Table 9.1.

Here the two particles � and � and the intervening domain � have the properties given in Table 9.3.
Note that this is the samedomain as in the precedingexample.

From this data, Theorem 17 now says that there are at most:

n�;� =
8 � 2 � 7

4

2 � 1
= 14 (9.21)

interactions.
Of these 14 input con�gurations, it turns out several give rise to the sameproducts. From a complete

survey of � -�- � con�gurations, the result is that there are actually only 4 di�eren t products from the � + �
interaction; theseare:

� + � ! ;

� + � ! 


� + � ! 2�

� + � ! � + �

They are shown in Figure 9.7.
This exampleservesto highlight the distinction betweenthe maximum number of interaction con�gura-

tions, as bounded by Theorem 17, and the actual number of unique products of the interaction. We'll come
back to this.

9.5.4 ECA 110

In the next example, we test Theorem 17 on one of the long-appreciated \complex" CA, elementary CA
110. As long ago as 1986, Wolfram (Wolfram 1986, Appendix 15) conjectured that this rule is able to
support universal, Turing-equivalent computation (replacing an earlier dictum (Wolfram 1984b,p. 31) that
all elementary CA are \to o simple to support universalcomputation"). While this conjectureinitially excited
little interest, in the last few yearsit haswon increasingacceptancein the CA research communit y. Though
to date there is no publishedproof of universality, there arestudiesof its unusually rich variety of domainsand
particles, one of the most noteworthy of which is McIntosh's work on their tiling and tessellation properties
(McIn tosh 2000). Becauseof this CA's behavioral richness,I won't present its completeparticle catalog and
computational-mechanical analysis here; rather seeCrutch�eld and Shalizi (2001). Instead, I'll look at a
single type of reaction where the utilit y of Hordijk's Rule is particularly notable.

Consideronedomain, labeled� 0, and two particles that move through it, called � and � (Crutc h�eld and
Shalizi 2001). (This � particle is not to be confusedwith the � of the previous examples.) � 0 is ECA 110's
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Figure 9.7: The four di�eren t (out of 14 possible) interaction products for the � + � interaction.

Figure 9.8: The particle � of ECA 110: The space-timepatch shows two complete cyclesof particle phase.

\true vacuum": the domain that is stable and overwhelmingly the most prominent in space-timediagrams
generatedfrom random samplesof initial con�gurations. It has a temporal period T(� 0) = 1, but a spatial
period S(� 0) = 14. The � particle hasa period P(� ) = 15, during the courseof which it movesfour stepsto
the left: d� = 4. The � particle, �nally , has a period P(� ) = 42, and movesd� = 14 stepsto the left during
its cycle. This data givesthe � particle a velocity of v� = � 4=15 and the � particle v� = � 1=3.

Naively, one would expect to have to examine 630 (= P(� )P(� ) = 15 � 42) di�eren t particle-phase
con�gurations to exhaust all possibleinteractions. Theorem 17, however, tells us that all but

(15)(42)( � 4
15 � � 1

3 )
(14)(1)

= 3 (9.22)

of those initial con�gurations are redundant. In fact, an exhaustive search shows that there are exactly three
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Figure 9.9: The particle � of ECA 110: The space-timediagram shows onecomplete cycle of particle phase.

distinct interactions:

� + � ! � + 3wr ig ht ;

� + � ! � + 4wr ig ht ;

� + � ! � :

Here, � , wr ig ht , and � are additional particles generated by ECA 110. These interactions are depicted,
respectively, in Figures 9.11, 9.10, and 9.12.

The wr ig ht particle is somewhat unusual in that several can propagate side by side, or even constitute
a domain of their own. There are a number of such \extensible" particle families in ECA 110 (Crutc h�eld
and Shalizi 2001).

Finally, observe that, though all these particles are wide and have long periods, and move through a
complicated background domain, Hordijk's Rule is not just obeyed, but givesthe exact number of interaction
products. I'll comeback to what signi�cance this might have in the conclusionto this chapter.
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Figure 9.10: The reaction � + � ! � + 4wr ig ht in ECA 110.
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Figure 9.11: The reaction � + � ! � + 3wr ig ht in ECA 110.
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Figure 9.12: The reaction � + � ! � in ECA 110.
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9.6 Conclusion

9.6.1 Summary

The original interaction product formula of Park, Steiglitz and Thurston (1986) is limited to particles prop-
agating in a completely uniform background; i.e., to a domain whosespatial and temporal periods are both
1. When compared to the rich diversity of domains generatedby CAs, this is a considerablerestriction,
and so the formula does not help in analyzing many CAs. We've generalizedtheir result and along the
way establisheda number of properties of domainsand particles | structures de�ned by CA computational
mechanics. The examplesshowed that the upper bound is tight and that, in complex CAs, particle interac-
tions are substantially lesscomplicated than they look at �rst blush. Moreover, in developing the bound for
complex domains, the analysis elucidated the somewhatsubtle notion of a particle's intrinsic periodicit y |
a property not apparent from the CA's raw space-timebehavior: it requiresrather an explicit representation
of the bordering domains' structure.

Understanding the detailed structure of particles and their interactions movesus closerto an engineering
discipline that would tell onehow to designCA to perform a wide rangeof spatial computations usingvarious
particle types, interactions, and geometries. In a complementary way, it also brings us closer to scienti�c
methods for analyzing the intrinsic computation of spatially extendedsystems(Chapter 10).

9.6.2 Op en Problems

The foregoinganalysismerely scratchesthe surfaceof a detailed analytical approach to CA particle \ph ysics":
Each CA update rule speci�es a microphysicsof local (cell-to-cell) spaceand time interactions for its universe;
the goal is to discover and analyze those emergent structures that control the macroscopicbehavior. We'll
return to that problem in the next chapter, but �rst I'll list a few of questionsraised by theseresults.

It would be preferable to directly calculate the number of products coming out of the interaction region,
rather than (as here) the number of distinct particle-domain-particle con�gurations coming into the inter-
action region. We believe this is eminently achievable, given the detailed representations of domain and
particles that are entailed by a computational mechanics analysis of CAs.

Two very desirableextensionsof theseresults suggestthemselves. The �rst is to go from strictly periodic
domains to cyclic (periodic and \c haotic") domains and then to general domains. The principle di�cult y
hereis that Proposition 20 plays a crucial role in the current proof, but we do not yet seehow to generalizeits
proof to chaotic (positive entropy density) domains. The secondextensionwould be to incorporate aperiodic
particles, such as the simple one exhibited by ECA 18 (Crutc h�eld and Hanson 1993a). We suspect this
will prove considerably more di�cult than the extension to cyclic domains: it is not obvious how to apply
notions like \particle period" and \v elocity" to these defects. A third extension, perhaps more tractable
than the last, is to interactions of more than two particles. The geometry and combinatorics will be more
complicated than in the two-particle case,but we conjecture that it will be possible to establish an upper
bound on the number of interaction products for n� particle interactions via induction.

Doesthere exist an analogouslower bound on the number of interactions? If so, when do the upper and
lower bounds coincide?

In solitonic interactions the particle number is preserved (Peyrard and Kruskal 1984;Aizawa, Nishikawa
and Kaneko 1991;Park, Steiglitz and Thurston 1986;Steiglitz, Kamal and Watson 1988;Ablowitz, Kruskal
and Ladik 1979). What are the conditions on the interaction structure that characterize solitonic inter-
actions? The class of soliton-like particles studied in Park, Steiglitz and Thurston (1986) possessa rich
\thermo dynamics" closely analogousto ordinary thermodynamics, explored in detailed in Goldberg (1988).
Do these results generalizeto the broader class of domains and particles, as the original upper bound of
Park, Steiglitz and Thurston (1986) does?

While the particle catalog for ECA 110 is not yet provably complete, for every known pair of particles
the number of distinct interaction products is exactly equal to the upper bound given by Hordijk's Rule.
This is not generally true of most of the CAs we have analyzed and is especially suggestive in light of the
widely-acceptedconjecture that the rule is computation universal. We suspect that ECA 110's fullness or
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behavioral 
exibilit y is connectedto its computational power. (Cf. Remark 2 to Theorem 17.) However,
we have yet to examine other, computation universal CA to seewhether they, too, saturate the Hordijk's
Rule bound. One approach to this question would be to characterize the computational power of systems
employing di�eren t kinds of interactions, as is donein Jakubowski, Steiglitz and Squier (1997) for computers
built from interacting (continuum) solitary waves.
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Chapter 10

Spatio-temp oral Computational
Mec hanics

Not in the spaceswe know, but between them, They walk sereneand primal, undimensioned
and to us unseen.
| Abdul Alhazred (c. 750)

10.1 The Di�culties of Higher Dimensions

It may not have escaped the reader'sattention that, while Chapter 9 spoke freely of \hidden states" in a CA,
I was quite vagueabout just what those states were, and how they related to the hidden states constructed
in the previous chapters. It would be nice to say that those states are causalstates, in somesense,but it's
not clear what that might be. It's hard to seein what sensethe value at onepoint in the lattice is causedby
the valuesof its neighbors at that time, for instance. So the justi�cation of the domain-and-particle methods
has beensomewhatpragmatic | you can think of the CAs as doing things to regular languages,and those
languagescan be represented by machineswith states,and the results are fruitful | but alsounsatisfactory.

Now, of course,CA are dynamical systems(we've been over that at somelength in Section 8.2), so we
could apply computational mechanics to them, at the global level, in a very straightforward manner. The
causal states we'd derive in this way would capture all the patterns relevant to the global evolution of the
CA, and so in somesenseall the information about their spatial structure would be encoded into the global
� -machine. On the other hand, that encoding would be very hairy indeed, and we'd really like something
where the spatial structure was transparent, just as the � -machine makes the causal structure transparent.
So what we're looking for are spatially-localizedstates, which we can somehow link up with the states from
spatial computational mechanicsof CAs. Our desiredstatesshould alsobe causal,in somereasonablesense,
and have the optimalit y properties to which we've becomeaccustomed.

An obvious �rst step is to turn to information theory and automata theory, since they served us so
well with time-series. Unfortunately , nobody really knows how to work either of those theories in higher
dimensions. Automata theory, in particular, gets really ugly (Lindgren, Moore and Nordahl 1998), and
information theory isn't much better. (SeeEriksson and Lindgren 1987; Lempel and Ziv 1986; Andrienko,
Brillian tov and Kurths 2000; Feixas, del Acebo, Bekaert and Sbert 1999; Garncarek and Piasecki 1999;
Piasecki 2000for attempts to extend information theory to �elds in two or more dimensions.) That avenue
being blocked, a natural second step is to look to statistics. The statistical analysis of spatial data is
notoriously di�cult in all but the most trivial cases(Ripley 1981; Ripley 1988; Cressie1993; Grenander
1996). In part this is becausethe proper treatment of spatial stochastic processesis alsonotoriously di�cult
(see Schinazi (1999) and Guttorp (1995, ch. 4) for gentle intro ductions to spatial processesand spatial
statistics, respectively. Gri�eath (1979), Liggett (1985) and Guyon (1995) are more advanced treatments).
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In fact, we are in the uncomfortable position of having to strike out more or lesson our own.

10.2 Global Causal States for Spatial Pro cesses

In what follows, we'll consider, not spatial processesin general, but those whosespace,time and state are
all discrete, and spaceis a regular lattice. While this is a very broad classof processes| it includes all
cellular automata, for instance | it is still a limited one. At the end of this chapter and in the conclusion,
I'll talk about how theseassumptionsmight be relaxed.

We supposethat at each point in spacecan be in one of a �nite number of states, drawn from a �nite
alphabet A . Thus, a global con�guration is an element of A S , whereS is the lattice | either a �nite number,
for a �nite lattice, or

� d for a d-dimensional in�nite lattice. The global spatial processis a distribution over
sequenceof global con�gurations, an ensemble of elements of A S � T , where T = � if there is a de�nite
starting-time, or =

�

if time extends in both directions.

We write the random variable for the sequenceof all con�gurations up to and including time t as
 
G (t);

we call its particular valuespasts or histories. The future sequenceis
!
G (t).

For simplicit y, we assumethat the processis invariant under spatial translations (but not necessarilyany
other element of the spacegroup).

De�nition 34 (Global Causal State) The global causal state of a history is the set of all histories which
yield the same conditional distribution of futures. We write the random variable for the global causal state

as G (realizations 
 ), and the function from history to causal state as � . That is, G = � (
 
G), and

� (
 
G) =

�
 
g

0
j8

!
g; P(

!
G=

!
g j

 
G=

 
g) = P(

!
G=

!
g j

 
G=

 
g

0
)
�

(10.1)

Note that while global causalstates are de�ned in a time-invariant manner, they do not necessarilyhave a
time-invariant distribution. In particular, if the global processis non-stationary, the distribution over global
causalstates will be non-stationary.

All the properties of normal causalstates, from chapter 4 are inherited.

10.2.1 Wh y Global States Are not Enough

While in a senseknowing the global causalstate tells us all there is to know about the future of the spatial
process,it is not the ideal representation of the process'sstructure, for three reasons.

First, there is no explicit representation of the spatial structure. It is encoded, to be sure, in the global
causalstate, but generally not in any way which is easily comprehendedby human beings. In many CA, for
instance, the presenceor absenceof phase-defectsmakes a great deal of di�erence to the dynamics. This
would be re
ected by di�ering global causalstates,but not in any way which madeit particularly clear what
made the di�erence.

Second,the number of global causal states is apt to be very large | in the caseof deterministic CA,
roughly on the order of the number of lattice con�gurations. (The exact number would depend on the degree
of irreversibilit y of the update rule.) This is not a particularly compact representation of the spatial process's
structure, nor one which lends itself easily to calculation.

Third, getting adequatestatistics to empirically estimate the global causalstates is simply not practical.
For all thesereasons,the global causalstates approach to spatial processes,while valid, is useless.What

we would like, instead, is someway of factoring or distributing the information contained in the global causal
state acrossthe lattice | of �nding local causalstates. It is to this question that we now turn.
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10.3 Lo cal Causal States

A number of di�eren t ideas have been advanced for how to de�ne \lo calities" for purposesof higher-
dimensional information theory and automata theory. Someinvolve looking at larger and larger \blo cks"
of the samebasic shape (Eriksson and Lindgren 1987); others attempt to \scan over" paths in the lattice,
reducing the problem to that of well-ordered series(Feldman 1998). Neither of thesequite works (Feldman
1998), so here is another, which seemsto.

10.3.1 Ligh t Cones and Their Equiv alence Classes

Let x = (~x; t) be a single cell at a single time, or a point-instant . We de�ne the past light-cone of x, denoted
 
L (x), as all other point-instants (~y; s) such that s � t and jj~y � ~xjj < c(t � s), wherec is a positive constant
for the system,the maximum speedat which disturbancescan propagate | the \sp eedof light," as it were.1

We denote the random variable for the con�guration in the past light cone by
 
L , and its realization by

 
l . The future light-cone,

!
L (x), is similarly de�ned as all those point-instants (~y; s) such that s > t and

jj~y � ~xjj < c(s � t). It is the set of point-instants at which changesat x might have an e�ect. (SeeFigure
10.1 for a schematic.)

As with classical stochastic processes,any function on past light-cones partitions the set of them into
equivalence classes,and so assignsthem to e�ectiv e states. The obvious analogs of the de�nitions and
lemmas about e�ectiv e states for time-series all apply straight-forwardly, since none of the information-
theoretic arguments we made rely on having a well-ordered sequenceas the input to the e�ectiv e-state
function � . We wish to point out, however, a subtlety in the appropriate de�nition of prescience.

De�nition 35 (Lo cal E�ectiv e States) Any partition R of
 
L is an e�ectiv e state class; a cell � 2 R is

an e�ectiv e state. When the current past light-cone
 
l is included in the set � , we wil l speak of the process

being in state � at that point-instant. Thus, we de�ne a function � from past light-cones to e�ective states:

� :
 
L 7! R : (10.2)

A speci�c individual past light-cone
 
l 2

 
L maps to a speci�c state � 2 R ; the random variable

 
S for the

past maps to the random variable R for the e�ective states.

Remark. We have usedthe samenotation for local e�ectiv e states as for purely temporal e�ectiv e states; we
trust this will not causeconfusion,as we shall only be dealing with the local versionsfrom now on.

When we wish to refer to an arbitrary , �nite spatio-temporal region, we shall write K. The random
variable for the con�guration in K is K .

Lemma 27 (Old Coun try Lemma) For any local e�ective state, and any �nite region K �
!
L , H [K jR ] �

H [K j
 
L ].

Proof : Entirely analogousto the time-seriescase.

De�nition 36 (Lo cal Prescience) A local e�ective state is prescient i�, for any �nite space-time region

K �
!
L , H [K j bR] = H [K j

 
L ].

Remark. As with the de�nition of presciencein the caseof classical stochastic processes,this de�nition

avoids having to invoke an entropy which may well be in�nite, namely H [
!
L j

 
S].

1By this de�nition, a point-instan t is in its own past ligh t-cone. This is a slight departure from the standard usage in
relativit y, essentially to accommodate discrete time.
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LL

LL

xx t=0

Figure 10.1: Schematic of the light-cones of a single point-instant, x. Following convention for CAs, time

runs vertically downward, and the spatial coordinate(s) are horizontal. The grey squaresdenote
 
L (x), the

past light-cone of x. The white squaresare its future light-cone,
!
L (x). Note that we include x within its

own past light-cone, resulting in a slight asymmetry betweenthe two cones.
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Lemma 28 (Lo cal Prescience and Conditional Indep endence) For any set of e�ective states R , if
!
L j=

 
L jR , then R is prescient.

Proof : By Lemma 37, sinceR = � (
 
L ), the conditional independenceimplies that P(

!
L j

 
L =

 
l ) = P(

!
L jR =

� (
 
l )) for all

 
l . Therefore this is true for any K as well. Hencethe entropy of K conditional on

 
L is equal

to its entropy conditional on R. But this is the de�nition of local prescience.QED.

De�nition 37 (Lo cal Excess En trop y) The local excessentropy at x is

E loc (x) = log2
P(

!
L =

!
l (x);

 
L =

 
l (x))

P(
!
L =

!
l (x))P(

 
L =

 
l (x))

(10.3)

De�nition 38 (Excess En trop y Densit y) The excessentropy density, E loc , is

E loc � I (
 
L ;

!
L ) : (10.4)

It is the expectation value of the local excessentropy, E loc (x).

Remark 1. The proof of the assertion follows directly from the de�nition of mutual information.
Remark 2. Both E loc (x) and E loc can vary over time, and generally do in non-stationary processes.Note

that E loc is not the averageof E loc (x) over the lattice in any particular realization of the process.Rather,
it is the averageover the ensemble of all realizations. If the two averagescoincide on large lattices, then the
processhas a kind of spatial ergodicit y. (Cf. the notion of \brok en ergodicit y" in spin glasses(Fischer and
Hertz 1988;Palmer 1989).)

De�nition 39 (Lo cal Statistical Complexit y) For a set of e�ective states R , the local statistical com-
plexity a x, written C�

loc (R ; x) is

C�
loc (R ; x) � � log2 P(R(x) = � (

 
l (x))) (10.5)

De�nition 40 (Statistical Complexit y Densit y) The statistical complexity density of a set of local ef-
fective states:

C�
loc (R ) � H [R] : (10.6)

It is the expectation value of the local statistical complexity.

Remark. Seethe remarks on the excessentropy density.

10.3.2 The Lo cal Causal States

We adapt the de�nition of causalstates to the useof light conesin the obvious way.

De�nition 41 (Lo cal Causal State) The local causal state at x, written L (x), is the set of all past light-
coneswhoseconditional distribution of future light-conesis the sameas that of the past light-cone at x. That
is,

� (
 
l (x)) =

�
 
l

0
�
�
�
�P(K = kj

 
L =

 
l

0
) = P(K = kj

 
L =

 
l (x)) (10.7)

8K �
!
L ; 8k

o
(10.8)
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Lemma 29 (Conditional Indep endence of Past and Futur e Light-Cones) The past and future light-
conesare independent given the local causal state.

Proof : By the construction of the local causalstate,

P(
!
L =

!
l j

 
L =

 
l ) = P(

!
L =

!
l jL = � ) (10.9)

But L = � (
 
L ), so, by Lemma 37,

!
L j=

 
L jL . QED.

Theorem 18 (Prescience of Lo cal Causal States) The local causal statesare prescient: 8K,

H [K jL ] = H [K j
 
L ] (10.10)

Proof : Follows immediately from the combination of Lemmas29 and 28. QED.

Lemma 30 (Lo cal Re�nemen t Lemma) If bR is a prescient set of local e�ective states, then bR is a
re�nement of L , and there is a function h such that L = h( bR) almost always.

Proof : Identical to the global lemma.

Theorem 19 (Minimalit y of the Lo cal Causal States) For any prescient rival set of states, bR ,

C�
loc ( bR ) � C�

loc (L ) (10.11)

Proof : Identical to the global theorem.

Theorem 20 (Uniqueness of the Lo cal Causal States) If bR is prescient, and C�
loc ( bR ) = C�

loc (L ),
then there is a function g such that bR = g(L ) almost always.

Proof : Identical to the global theorem, substituting C�
loc for C� .

Theorem 21 (Lo cal Statistical Complexit y and Excess En trop y)

E loc (x) � C�
loc (L ; x) (10.12)

Proof : Recall the de�nition of E loc (x):

E loc (x) = log2
P(

!
L =

!
l (x);

 
L =

 
l (x))

P(
!
L =

!
l (x))P(

 
L =

 
l (x))

(10.13)

= log2
P(

!
L =

!
l (x)j

 
L =

 
l (x))

P(
!
L =

!
l (x))

(10.14)

= log2
P(

!
L =

!
l (x)jL = � (

 
l (x)))

P(
!
L =

!
l (x))

(10.15)

= log2
P(

!
L =

!
l (x); L = � (

 
l (x)))

P(
!
L =

!
l (x))P( L = � (

 
l (x)))

(10.16)

= log2
P(L = � (

 
l (x)) j

!
L =

!
l (x))

P(L = � (
 
l (x)))

(10.17)

= log2 P(L = � (
 
l (x)) j

!
L =

!
l (x)) � log2 P(L = � (

 
l (x))) (10.18)

= C�
loc (L ; x) + log2 P(L = � (

 
l (x)) j

!
L =

!
l (x)) (10.19)

� C�
loc (L ; x) (10.20)
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Theorem 22 (Bounds of Excess (Densities)) E loc � C�
loc (L ).

Proof : Identical to the global theorem. Alternately , simply take the expectation value of both sidesof the
previous theorem.

10.3.3 Comp osition of the Global State from Lo cal States

10.3.3.1 Extended or Patch Causal States

Rather than considering the past and future light-conesof a single point-instant, we can consider those of
a patch of points at the sametime. It will be convenient to only considerconnectedpatches. The past and
future conesof the patch are simply the unions of the conesof the patch's constituent cells. We denote the

patch's past light-cone by
 
P, its future by

!
P. We de�ne prescienceand the patch causalstate exactly as for

the local case;the patch causalstate is written P.
Transparently , the patch causalstatesare prescient (for the patch future light-cone), minimal among the

prescient patch states, and render the patch's future light cone conditionally independent of its past light
cone. Moreover, Lemma 28 holds good for them, too; we shall make much useof this in what follows.

10.3.3.2 Comp osing Lo cal States in to Patch and Global States

Lemma 31 (P atch Comp osition Lemma) The causal state of a patch at one time P is uniquely deter-
mined by the composition of all the local causal stateswithin the patch at that time.

Proof : We will show that the composition of local causalstates within the patch is a prescient \e�ectiv e
state" of the patch, and then apply minimalit y.

Consider �rst a patch consistingof two (spatially) adjacent cells, x 1 and x2. De�ne the following regions:

 
L c =

 
L (x1)\

 
L (x2)

 
L 1 =

 
L (x1)n

 
L c

 
L 2 =

 
L (x2)n

 
L c

Thus
 
L (x1) =

 
L 1 [

 
L c, and likewise for

 
L (x2). De�ne

!
L 1,

!
L c and

!
L 2 similarly. (SeeFigure 10.2 for

a picture of these regions.) Now consider the con�gurations in these regions. We may draw a diagram of
causale�ects (Figure 10.3).

Lemma 29 tells us that every path from
 
L 1 or

 
L c to

!
L 1 must go through L 1. By the very de�nition of

light-cones,there cannot be a path linking
 
L 2 to

!
L 1. Therefore there cannot be a link from L 2 to

!
L 1. (Such

a link would in any caseindicate that
!
L 1 had a dependenceon

 
L c which was not mediated by L 1, which is

false.) All of this is true, mutatis mutandis, for
!
L 2 as well.

Now notice that every path from variables in the top row | the variables which collectively constitute
 
P | to the variables in the bottom row | which collectively are

!
P | must passthrough either L 1 or L 2.

The set Z = f L 1; L 2g thus \blo cks" those paths. In the terminology of graphical studies of causation, Z

d-separates
 
P and

!
P. But d-separation implies conditional independence(Pearl 2000, p. 18). Thus

 
P and

!
P are independent given the composition of L 1 and L 2. But that combination is a function of

 
P, so Lemma

28 applies, telling us that the composition of local states is prescient. Then Lemma 30 tells us that there is
a function from the composition of local states to the patch causalstate.

Now, the reader may verify that this argument would work if one of the two \cells" above was really
itself a patch. That is, if we break a patch down into a singlecell and a sub-patch, and we know their causal
states, the causal state of the larger patch is �xed. Hence, by mathematical induction, if we know all the
local causalstates of the cells within a patch, we have �xed the patch causalstate uniquely. QED.
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Figure 10.2: The space-timeregions for a patch of two cells. point-instants which belong exclusively to the
light-conesof the cell on the left (x1) are shadedlight grey; thosewhich belongexclusively to the light-cones

of the other cell (x2) are shadeddark grey. The areasof overlap (
 
L c and

!
L c) are white, with heavy borders.

Note that, by the de�nition of light-cones, the con�guration in
 
L 1 can have no e�ect on that in

!
L 2 or vice

versa.
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Figure 10.3: Diagram of causale�ects for the two-cell patch. Arrows 
o w from causesto e�ects; the absence
of a variable betweentwo nodesindicates an absenceof direct causalin
uence. Dashedlines indicate possible
correlations.
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Theorem 23 (Global Comp osition Theorem) The global causal state at one time G is uniquely deter-
mined by the composition of all the local causal statesat that time.

Proof : Apply Lemma 31 to the \patc h" of the entire lattice. The proof of the lemma goesthrough, because
it in no way dependson the sizeor the shape of the past, or even on the patch being �nite in extent. Since
the patch causal state for this patch is identical with the global causal state, it follows that the latter is
uniquely �xed by the composition of the local causalstates at all points on the lattice. QED.

Remark 1. We have thus shown that the global causalstate can be decomposedinto local causalstates,
as we have de�ned them, without losing its global properties or indeed any information.

Remark 2. Conceivably, we could de�ne local causalstateswith referencenot to light-conesbut to regions
of other shapes,and someof our formal results would still hold. It is not clear, however, whether we could
then recover the global causal state through composition, since the properties of light-cones per se played
an important role in our proof. This topic deservesfurther investigation.

10.4 Connections Among Lo cal States; the � -Mac hine

Just as in the caseof time seriesor of transducers, causal states succeedeach other, with transitions be-
tween states being accompaniedby observational symbols. In the caseof spatial processes,there are two
complications.

First, transitions can be made, not just forward in time, but also laterally, from a cell to any of its
neighbors. Thus we will needto label transitions, not just by their probabilities and their symbols, but also
by their directions.

The secondcomplication concernsthose symbols. For time series,the symbols on the transitions were
simply that, symbols from the alphabet A . For transducers,we neededto label transitions by two symbols,
onefrom the input alphabet A and onefrom the output alphabet B. In both cases,the labelsconsistedof all
the new observations, of all the new data, observed in the courseof the transition. 2 The new data obtained
from a transition in a spatial processconsistsof the valuesof point-instants which are in the past light cone
of the new point-instant, but were inaccessiblefrom the old one.

More formally, de�ne the fringe of the past light coneof x, when moving to the neighboring point-instant

x0, as all point-instants in
 
L (x0) that were not in

 
L (x). (SeeFigures 10.2 and 10.4.) Then the new data

consistsof the con�guration in the fringe.
That we should consider the new data to be the fringe con�gurations is not at all obvious (at least not

to me); therefore it needsto be proved. The proof will take the form of showing that the old local causal
state, plus the fringe, determinesthe new local causalstate. There are two casesto considermoving forward
in time, and moving sideways in space.

10.4.1 Temp oral Transitions

We want to move forward in time one step, while staying in place. Call the point-instant we start at x, and
its successorx+ . A little thought will convince you that the whole of the new future light coneis contained
inside the old future light cone,and vice versafor the past cones.So let's de�ne

 
L n =

 
L (x+ )n

 
L (x)

!
L o =

!
L (x)n

!
L (x+ ) ;

 
L n is the fringe. (SeeFigure 10.4 for a picture of theseregions.)

Lemma 32 (Determinism of Temp oral Transitions) The local causal state at x + is a function of the

local causal state at x and the time-forward fringe
 
L n .

2Cf. the idea of the \inno vation" in �ltering theory (Bucy 1994).
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Figure 10.4: Space-timeregionsfor the time-forward transition from x to x + . Region inside heavy borders:
 
L (x), the past light-cone of x. Dark grey:

 
L (x+ ), the past light-cone of x+ . Light grey:

!
L (x+ ), the future

light-cone of x+ . White:
!
L (x), the future light-cone of x. Note that

 
L (x) �

 
L (x+ ) and

!
L (x+ ) �

!
L (x).

 
L n consistsof the dark grey cells outside of the heavy lines;

!
L o consistsof white cells (not the light grey

ones).
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Figure 10.5: Diagram of causale�ects for the con�gurational variables involved in a time-forward transition.
Dashed arrows indicate possiblenon-causalcorrelations. Dotted arrows indicate indirect e�ects, mediated
by paths consisting entirely of solid arrows.

Proof. Start by drawing the diagram of causale�ects (Figure 10.5).
!
L o and

!
L (x+ ) jointly constitute

!
L (x), so there must be paths from L(x) to both of them. Now, L (x + )

renders
 
L (x+ ) and

!
L (x+ ) conditionally independent. Hence it should d-separate them in the graph of

e�ects. But
 
L (x) is part of

 
L (x+ ) and hasa direct path to L (x). This meansthat there cannot be a direct

path from L(x) to
!
L (x+ ); rather, the causationmust be mediated by L(x + ). (We indicate this in the graph

by a dotted arrow from L(x) to
!
L (x+ ). Similarly,

 
L (x) certainly helps determine L(x+ ), but it neednot

do so directly. In fact, it cannot: L (x) must d-separate
 
L (x) and

!
L (x), i.e., must d-separate

 
L (x) from

!
L (x+ ) and

!
L o. Hencethe in
uence of

 
L (x) on L(x+ ) must run through L(x). (We indicate this, too, by

a dotted arrow from
 
L (x) to L (x+ ).)

Now it is clear that the combination of L (x) and
 
L n d-separates

 
L (x+ ) from

!
L (x+ ), and hencemakes

them conditionally independent. But now the usual combination of Lemmas 28 and 30 tell us that there's

a function from L(x);
 
L n to L (x+ ). QED.

10.4.2 Spatial Transitions

Lemma 33 (Determinism of Spatial Transitions) Let x 1 and x2 be simultaneous, neighboring point-

instants. Then L(x2) is a function of L (x1) and the fringe in the direction from x 1 to x2,
 
L 2.
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Here the breakdown of the past and future light-cone regionsis the sameaswhen we saw how to compose
patch causalstates out of local causalstates in Section 10.3.3,as is the diagram of causal e�ects; we'll use
the corresponding terminology, too. (SeeFigs.10.2 and 10.3, respectively.) What we hope to show here is

that conditioning on the combination of L 1 and
 
L 2 makes

!
L (x2) independent of

 
L 2 and

 
L c. Unfortunately ,

as the reader may verify by inspecting the diagram, our conditional variables no longer d-separatethe other
variables (since they have an unblocked connection through L 2). All is not lost, however: d-separation
implies conditional independence,but not conversely.

Abbreviate the pair of variables
n

L 1;
 
L 2

o
by Z . Now, L 2 is a (deterministic) function of

 
L c and

 
L 2.

Henceit is also a function of Z and
 
L c. Thus P(

!
L 2 jL 2; Z;

 
L c) = P(

!
L 2 jZ;

 
L c). But this tells us that

!
L 2 j= L 2jZ;

 
L c (10.21)

From d-separation, we also have

!
L 2 j=

 
L c jZ; L 2 (10.22)

Applying Eq. A.33,

!
L 2 j= L 2;

 
L c jZ (10.23)

Applying Eq. A.34,

!
L 2 j=

 
L c jZ (10.24)

SinceZ = Z;
 
L 2,

!
L 2 j=

 
L c jZ;

 
L 2 (10.25)

The following conditional independenceis odd-looking, but trivially true:

!
L 2 j=

 
L 2 jZ (10.26)

And it, along with Eq. A.35, givesus

!
L 2 j=

 
L c;

 
L 2 jZ (10.27)

A similar train of reasoningholds for
!
L c. Thus, the entire future light coneof x2 is independent of that

point-instant's past light cone,given L 1 and
 
L 2. This tells us that

n
L 1;

 
L 2

o
is prescient for

!
L (x2), hence

L 2 is a function of it.
QED.

10.4.3 Arbitrary Transitions

Lemma 34 (Determinism along Paths) Let x 1 and x2 be two point-instants, suchthat x2 is at the same
time or later than x1. Let � be a spatio-temporal path connecting the two point-instants, arbitrary except
that it can never go backwards in time. Let F� be the successionof fringes encountered along � . Then L(x 2)
is a function of L (x1), � and F� ,

L (x2) = g(L (x1); � ; F� ) (10.28)

for somefunction g.
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Proof. Apply Lemma 32 or 33 at each step of �. QED.

Lemma 35 (P ath-Indep endence of Transitions) Let x 1 and x2 be two point-instants as in the previous
lemma, and let � 1, � 2 be two paths connecting them, and F� 1 and F� 2 their fringes, all as in the previous
lemma. Then the state at x2 is independent of which path was taken to reach it,

g(L (x1); � 1; F� 1 ) = g(L (x1); � 2; F� 2 ) : (10.29)

Proof. Supposeotherwise. Then either the state we get by going along � 1 is wrong, i.e., isn't L (x2), or the
state we get by going along � 2 is wrong, or both are.

L (x2) 6= g(L (x1); � 1; F� 1 ) _ L (x2) 6= g(L (x1); � 2; F� 2 ) (10.30)
!
L (x2) 6 j=

 
L (x2)jL (x1); � 1; F� 1 _

!
L (x2) 6 j=

 
L (x2)jL (x1); � 2; F� 2 (10.31)

: (
!
L (x2) j=

 
L (x2)jL (x1); � 1; F� 1 ^

!
L (x2) j=

 
L (x2)jL (x1); � 2; F� 2 ) (10.32)

But, by the path determinism lemma 34,
!
L (x2) j=

 
L (x2)jL (x1); � 1; F� 1 and

!
L (x2) j=

 
L (x2)jL (x1); � 2; F� 2 .

Hencetransitions must be path-independent. QED.

10.4.4 The Lab eled Transition Probabilities

Just as in the caseof time series,we can construct labeled transition probabilit y functions, T , which take
as arguments the current state, the direction of transition and the fringe seenon transition (regarded as a
string over A), and returns the state arrived at. For time series,we also include the probabilit y of emitting
that symbol and so of arriving at that state. That is licit, becauseeach state is associated with a unique
morph, and so a unique distribution for the next symbol. Here the local causal states have morphs, but
only over their future light cones,which include little if any of the relevant fringes. So it's not immediately
obvious that those transition probabilities are well-de�ned, stationary objects.

In practice, every spatial systemwehaveexamineddoes havewell-de�ned transition probabilities between
its local states. I am led to the following.

De�nition 42 (Causal Paren ts of a Lo cal Causal State) The causal parents of the local causal state
at x are the causal statesat all point-instants which are one time-step before x and inside its past light-cone:

A(x) � f L (~y; t � 1) j jj~y � ~xjj � cg (10.33)

Lemma 36 (Screening-o� of Past Ligh t Cone by Causal Paren ts) The local causal state at a point-
instant, L (x), is independent of the con�gur ation in its past light cone, given its causal parents:

L (x) j=

 
L (x)jA(x) (10.34)

Proof. x is in the intersection of the future light conesof all the cells in the patch at t � 1. Hence, by
the arguments given in the proof of the composition theorem, it is a�ected by the local states of all those

cells, and by no others. In particular, previous valuesof the con�guration in
 
L (x) have no direct e�ect; all

causation is mediated through those cells. Hence,by d-separation, L (x) is independent of
 
L (x). QED.

Theorem 24 (T empor al Markov Pr operty for Local Causal States) The local causalstate at a point-
instant, L (x), is independent of the local causal statesof point-instants in its past light cone, given its causal
parents.

Proof. By the previous lemma, L (x) is conditionally independent of
 
L (x). But the local causal states in

its past light coneare a function of
 
L (x). Henceby Lemma A.38, L (x) is also independent of those local

states. QED.
Comforting though that is, we would really like a stronger Markov property, namely the following.
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Conjecture 2 (Markov Field Pr operty for Local Causal States) The local causal states form a
Markov random �eld in space-time.

Argument for why this is plausible. We've seenthat, temporally speaking, a Markov property holds: given
a patch of cells at one time, they are independent of their past light cone,given their causalparents. What
we needto add for the Markov �eld property is that, if we condition on present neighbors of the patch, as
well as the parents of the patch, then we get independenceof the states of all point-instants at time t or
earlier. It's plausible that the simultaneousneighbors are informativ e, sincethey are alsocausaldescendants
of causal parents of the patch. But if we consider any more remote cell at time t, its last common causal
ancestorwith any cell in the patch must have beenbeforethe immediate parents of the patch, and the e�ects
of any such local causalstate are screenedo� by the parents.

10.4.5 � -Mac hine Reconstruction

We havedesignedand implemented an algorithm for the reconstruction of local causalstatesfrom simulation
data for lattice dynamical systems. (It could, in principle, be used on experimental data as well.) The
procedureis as follows. We examine the empirical joint distribution for con�gurations of past light-conesof
depth L and future light-cones of depth K . That is, we gather statistics on the joint distribution of past

and future cones. If we have seenN light-cone pairs, then we estimate P(
 
L

L
=

 
l

L
;

!
L

K
=

!
l

K
) by

P̂N (
 
L

L
=

 
l

L
;

!
L

K
=

!
l

K
) =

� (
 
l

L
;

!
l

K
)

N
(10.35)

where � (
 
l

L
;

!
l

K
) simply counts the number of times we have seenthat pair of light-cones. This is known as

the joint empirical distribution . Then we calculate the empirical conditional distribution of futures for each

past, P̂N (
!
L

K
=

!
l

K
j

 
L

L
=

 
l

L
), for each

 
l

L
and each

!
l

K
, as

P̂N (
!
L

K
=

!
l

K
j

 
L

L
=

 
l

L
) =

P̂N (
 
L

L
=

 
l

L
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!
L

K
=

!
l

K
)

P̂N (
 
L

L
=

 
l

L
)

(10.36)

where the denominator is obtained, in the normal way, by summing the joint distribution over all future
light-cone con�gurations. Finally, we group the past light-cones into classesor e�ectiv e states. We list the

pasts in someorder, and start by assigningthe �rst past to the �rst class. Now considerpast
 
l

L
, which is

at least the secondpast in our order. We go through all the existing classesin order, and check whether
 
l

L

is compatible with all the pasts in that class. Compatibilit y between two pasts is de�ned by the Euclidean
distance between their empirical conditional distributions of futures being lessthan a pre-chosentolerance

parameter � . That is,
 
l

L
and

 
l

L 0

are compatible when

X

!
l

K

�
P̂N (

!
L

K
=

!
l

K
j

 
L

L
=

 
l

L
) � P̂N (

!
L

K
=

!
l

K
j

 
L

L
=

 
l

L 0

)
� 2

� � (10.37)

If
 
l

L
is compatible with all the pasts already in state i , it is compatible with state i . We add

 
l

L
to the

�rst state in our enumeration with which it is compatible. If it is not compatible with any existing state, we
create a new one for it. This procedureis repeated until all pasts have beenassignedto states.

Clearly, compatibilit y between histories is not a true equivalence relation (it is not transitiv e), so the
order in which pasts are checked for membership in states, and in which states are created, does matter.
This can be e�ectiv ely randomized, however, and in any casedoesnot e�ect the reliabilit y of the procedure,
which we now address.
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10.4.5.1 Reliabilit y of Reconstruction

Supposethat L and K aresu�cien tly large that they su�ce to distinguish the causalstates,i.e., that if wehad
the exact distribution over past and future light-conesof those respective depths, and partitioned according
to the de�nition of local causalstates, we would recover the true local causalstates. Then conditioning on
pastsof depth L makesfutures independent of the further past. Indeed, every time we examinethe future of
a certain past con�guration of depth L , it is independent of all the other futures of that samecon�guration.
Thus, the strong law of large numbers tells us that our estimate of the conditional probabilit y of any future
con�guration of depth K will almost surely convergeon the true probabilit y:

�
�
�
�P(

!
L

K
=

!
l

K
j

 
L

L
=

 
l

L
) � P̂N (

!
L

K
=

!
l

K
j

 
L

L
=

 
l

L
)

�
�
�
�

� !
N ! 1 0 (10.38)

Hencethe squarederrors also convergeto zero. Sincethere are only a �nite number of such con�gurations,
it follows that the sum of the sum of such squarederrors will also convergeto zero, with probabilit y one.

Now, under the assumptions we have made about being able to recover the causal states from exam-
ining only conesof �nite depth, for any processthere will be only a �nite number of distinct conditional
distributions of future light-cones. Hence there will be a strictly positive � 0, such that all the conditional
distributions have a total-v ariation distance of at least � 0 from each other. Pick a � � � 0=2 for our tolerance
parameter. Then two pastswill be wrongly assignedto the samestate only if oneof their empirical distribu-
tions di�ers from its true distribution by at least � 0=2. But the probabilit y of this happening goesto zeroas
N ! 1 , aswe've seen.Hence,asymptotically, the probabilit y of any two light-conesbeing wrongly assigned
to the sameclassgoes to zero. Similarly, if two light-conesshould be placed together, the probabilit y that
their empirical distributions di�er by enough to separatethem also goes to zero. Thus, asymptotically, all
light-conesare assignedto the correct equivalenceclass,provided � � � 0=2. Indeed, all that we really need
is for � to be below � 0=2 for su�cien tly large N , so it su�ces that � ! 0.

To summarize: the spatial reconstruction algorithm given here is consistent, PAC, and reliable, in the
samesensesas the state-splitting algorithm for time series(Chapter 5). All this, recall, is under the assump-
tion that past and future light-conesof depth L and K are su�cien t to recover the causalstates. If we can
let L; K ! 1 , then the algorithm is consistent for all spatial processeswith some�nite speed-of-light.

Any attempt to reconstruct causal states from empirical data is necessarilyan approximation. Other
algorithms exist in the literature, all of which deliver the appropriate causal states in the limit of in�nite
data and in�nite history-length (Chapter 5; Crutch�eld and Young 1990; Hanson 1993; Perry and Binder
1999). That is, like the present algorithm, they are consistent estimators if given in�nite histories. (If every
causalstate can be unambiguously identi�ed after only a �nite history, then they are simply consistent.) A
number of thesealgorithms (Chapter 5; Perry and Binder 1999) could be adapted to light-cones;others are
restricted to working with time-series. We hope to addressthe important question of the error statistics
(Mayo 1996) of these reconstruction algorithms in future work; our conjecturesabout the convergencerate
of the state-splitting algorithm (Chapter 5) are relevant here, too.

10.5 Emergen t Structures

In Chapter 9, I claimed that domains and particles were emergent structures. Here I will show how to
de�ne domains, particles, and other common spatial emergent structures in terms of the � -machine. Later,
in Section 11.2.2, I'll consider the idea that emergent structures can generically be de�ned as sub-machines
of the � -machine (I'll also give a de�nition of \emergent").

De�nition 43 (Domain) A domain phaseis a sub-machineof the � -machine which is strongly connected
for transitions in all spatial directions. A domain is a strongly-connected set of domain phases.

De�nition 44 (Defect) Any point-instant in a con�gur ation which is reached on a transition that doesnot
belong to any domain is in a defect.
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De�nition 45 (d-Brane) A d-brane is a defect machine which is a strongly-connected graph in time (pos-
sibly with a translation) and n > d � 1 spatial directions. If d = 1, then it is a em line.

De�nition 46 (P article) A particle is a defect machine which is a strongly-connected graph in time (pos-
sibly composed with a translation), but has bounded extent in all spatial directions.

In every casewhich has been checked, the particles and domains identi�ed by hand, through spatial
computational mechanics, exactly correspond to sub-machines identi�ed in this way. That is, spatial causal
states are also spatio-temporal local causalstates.

Conjecture 3 (Domain and Particle Emergence) Suppose that a spatial processhas domains, branes
and particles. Derive a new process from it by applying a �lter which maps each domain to a distinct
value, each brane-type to a distinct value, and each particle to a distinct value. Then that derived processis
emergent.

It is hard to seehow domain-�ltering could lower the e�ciency of prediction, but no proof saying otherwise
exists.

10.6 Examples

10.6.1 ECA Rule 54: Domain and Particles

Let us return to rule 54. Running the � -machine reconstruction algorithm for spatial processeson it identi�es
eight equivalenceclassesof past light-cones; we need only go back to a depth of 2 to do this. (SeeFigure
10.6.) Furthermore, we can get the spatial transition structure (Figure 10.7) and the temporal structure
(Figure 10.8). Compare Figure 10.7 with Figure 9.3. The two structures are manifestly the same,both in
states and in transitions. (It is easyto work out the correspondencebetweenthe fringes in the former and
the scanning symbols in the later.) But the domain �lter was assembled by hand, and the new � -machine
was automatically constructed.

Observe that the probabilit y of staying within a domain phase,once entered, is much higher than that
of leaving it, so that grouping the domain states together (by �ltering on the domain) will improve the
e�ciency of prediction. That is, the domain-�ltered processis emergent.

10.6.2 ECA Rule 110: Domains and Particles

Recall that ECA 110 has one primary domain, and a large number of minor, lessstable ones. The primary
domain, � 0, has spatial period 14 and temporal period 7, so that each point in the domain follows one of
two distinct time courses.

All of this was discovered by hand, and prett y painful hands at that. Here is the result of running the
spatial � -machine reconstruction algorithm on rule 110, starting from random initial conditions, with a past
and future depth set equal to 3.

There are 31 causalstates, each occupied by only a single past light cone. (SeeTable 10.1.) The spatial
structure is given by Figure 10.9, for left-to-righ t transitions. The � 0 domain can easily be seen,as the
chain of 14 states on the left. It is fairly easy to �nd other closedchains of states, but these are not the
other domains. This becomesevident when we look at the temporal structure (Figure 10.10). � 0 has two
sub-components, corresponding to the two time coursesavailable to a site within the domain. Most of the
chains of states outside � 0 are not preserved under time-evolution, therefore they are not domains.
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Figure 10.6: The light-conesfor the local causalstates of rule 54
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AA
0.16

GG
0.10

FF
0.11

BB
0.13

CC
0.12

DD
0.13

EE
0.14

HH
0.11

00 ||  0.28

11
 ||  0

.1
0

01 ||  0.21

10 ||  0.87

10 ||  0.79

00
 ||  

0.
90

11 ||  0.13

11 ||  0.72 01 ||  0.98

01 ||  0.25

01
 | 

0.
84 00 ||  0.02

11 ||  0.74

10 ||  0.16

00 ||  0.75

10 ||  0.26

Figure 10.7: Left-to-righ t spatial transitions for rule 54. The fringe symbols should be read backwards in
time. That is, \10" meansthat the cell to the right of the current one, at the current time, has a value of
1, and the cell to the right of that, one time-step previously, has a value of 0.

E 
 0.14

A 
 0.16

000  |  1.00
000  |  0.14

D 
 0.13

110  |  0.14

B 
 0.13011  |  0.14

G 
 0.10111  |  0.58

101  |  0.08

F 
 0.11

100  |  0.71

H 
 0.11

001  |  0.02

C 
 0.12

010  |  0.19

011  |  1.00

101  |  0.08

100  |  0.02

001  |  0.71

010  |  0.19

110  |  1.00

101  |  0.03

100  |  0.13

010  |  0.71

101  |  1.00

Figure 10.8: Temporal transitions for rule 54. The fringe should be read left-to-righ t. That is, \011" means
that the cell to the left of the present cell has a value of 0 at the present time, that the present cell will have
a value of 1 at the next time, and that the cell to the right of the present cell has a value of 1 currently .
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State Label Past Light Cone State Past State Past State Past State Past
A 11110 B 11100 C 11000 D 10001 E 00010

001 010 100 001 011
1 1 0 1 1

F 00100 G 01001 H 10011 I 00110 J 01101
110 101 011 111 111
1 1 1 0 0

K 11011 L 10011 M 01111 N 11111 0 00000
111 110 100 000 000
0 1 0 0 0

16 10000 34 01000 87 10100 103 01100 157 10010
000 100 110 110 011
0 0 1 1 1

190 11010 222 10110 235 01110 265 00001 315 11001
111 111 101 001 101
0 0 1 1 1

334 00101 350 10101 381 11101 397 00011 430 01011
111 111 011 011 111
0 0 1 1 0

455 00111
110
1

Table 10.1: Local causal states of rule 110. Each state contains only a single light cone. The states which
composethe primary domain are given alphabetical labels, in accordancewith previous studies of the rule.
The others are labeled by numbers assignedto them by the reconstruction algorithm.
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011  |  0.58

010  |  0.42

87

100  |  0.47

350

011  |  0.54

111  |  0.60

000  |  0.40

111  |  0.59

000  |  0.41

011  |  1.0

Figure 10.9: Spatial part of the � -machine for rule 110, left-to-righ t transitions. States belonging to the � 0

domain, the rule's \true vacuum," are enclosedin a box on the left. The fringe labels are read left-to-righ t,
as in Figure 10.7.
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Figure 10.10: Temporal part of the � -machine for rule 110. The large box on the left enclosesthe domain
� 0, the sub-boxes its two phases.The fringe labels are read as in Figure 10.8.
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10.7 Summary

The main point of this chapter has been to show how to de�ne local causal states for well-behaved spatial
processes.By using light conesfor our histories and futures, we can assign a causal state to each point-
instant, and theseare the unique minimal optimal predictors, aswe'd hope; indeed,almost all of the familiar,
comforting properties of causal states in purely temporal processescarry over. We can also composethese
local causalstates into the causalstates for extendedregions,even the entire lattice, thereby recovering the
global causalstate. We can de�ne the most common sorts of emergent structure (domain, particle, etc.) in
terms of the � -machine connecting the local causalstates, and so put all the results of Chapter 9 on a much
�rmer footing.

If the ideas in this chapter are the right way of thinking about patterns and complexity in spatial
processes,then it really doesn't make much senseto try to work out the complexity of (say) static images,
or of individual con�gurations. Complexity, on this view, must be a function of the processwhich generates
con�gurations (cf. Lloyd and Pagels1988);we needmovies,not snapshots.But this should not be distressing
to physicists: we, of all people, should be very suspiciousif pattern appeared without a causal history to
back it up.

I want to closethis chapter by suggestingtwo area for future work.
One has to do with irregular lattices. I have assumedthroughout that spaceis a regular lattice, that

every cell's connections look like every other cells. But a lot of the math developed here doesn't depend
on that. Spacecould be an arbitrary graph, for instance, and we could still de�ne past and future light
cones,and so local causalstates | presumably a di�eren t set of causalstates for each point with a distinct
set of connections. I think the Composition Theorem would still hold, but I don't really know. It would
be interesting to �nd out, since there are many important dynamical systemswhich live on spatial lattices,
but not on regular graphs. In particular, many technical, biological and social networks seemto be \small
world" networks, and it would be nice to understand how they work, and particularly nice to understand
their emergent structures (if any) (Watts 1999; Shalizi 2000). We might also look at these networks as so
many interconnected transducers, along the lines of Chapter 7 | which may be formally equivalent! But
the transducer view may be more valuable when we do not know what the network is to start with | and,
after all, a network, in thesesense,is a pattern of causal interaction, so it ought to be something we infer.
So this's one area where the theory could usesomework.

Another, much more abstract one, goesback to the composition theorems,which say that global proper-
ties can be built up out of local ones. This is reminiscent of a common sort of result in algebraic geometry,
where a global invariant is algebraically composed out of objects which represent local properties, as the
polynomial equivalent of a knot is constructed from terms representing its various parts. Sincewe can de�ne
algebraic structures which are related to the causal states, as in Appendix B.2, we might be able to give
an algebraic version of the composition theorem, which actually stated what the composition function was,
rather than just proving that it must exist. This could also open the way to a more direct and algebraic
characterization of things like domains. But this is all, alas, quite speculative.3

3Thanks to Mitc hell Porter for suggesting this idea.
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Chapter 11

Conclusion

11.1 What Has Been Accomplished

The main line of this book hasbeenthe exposition of computational mechanicsfor increasingly sophisticated
processes.

We started, in Chapter 3 with memorylesstransducers,wherewe constructed causalstatesasequivalence
classesof inputs | two inputs are causally equivalent when they have the sameconditional distribution of
outputs. The causal states, we saw, were optimal predictors, and the unique minimal optimal predictors.
Sincethey are both unique and minimal, we could identify the complexity of the processwith the complexity
of the causalstates, de�ned as the amount of information neededto specify the current causalstate.

The rest of the book showed how the samebasic idea of causalstate works with di�eren t sorts of process:
time series,transducersand CAs. The time serieschapter intro duced the idea of assigninga distinct causal
state to each moment of time and of connectingthem together through an � -machine. The � -machine's inter-
nal transitions are deterministic (in the automata-theory sense)and minimally stochastic. This work revisits
the core of computational mechanics (Crutc h�eld and Young 1989;Crutch�eld 1994a)with more rigor and
new techniquesof proof, which lead to somenew results, such as the minimal stochasticity of the � -machine,
and the uniquenessof the causal states. Chapter 7 intro duced the computational mechanics of interacting
time series. Chapter 9, following a long tradition of spatial computational mechanics (Hanson and Crutch-
�eld 1992; Crutch�eld and Hanson 1993b; Hanson and Crutch�eld 1997; Feldman and Crutch�eld 1998a),
assignsa causal state to each point in one-dimensionalspace,e�ectiv ely treating the spatial coordinate as
Chapter 4 treated time. Finally, Chapter 10 went beyond the older temporal and spatial computational
mechanics, to a fully spatio-temporal version of the theory, with the advantage of working in any number of
spatial dimensions.

Along the way, we saw how to estimate the causalstates and the � -machine from data, and how spatial
computational mechanics lets us begin to get a handle on the computational powers of cellular automata.
Now we'll seehow to de�ne emergenceand self-organization.

11.2 Emergence

Reductionism, roughly speaking, is the view that everything in this world is really something
else,and that the something elseis always in the end unedifying. So lucidly formulated, one can
seethat this is a luminously true and certain idea.
| Ernest Gellner (1974, p. 107)

\Emergence" is an extremely slippery concept, used in an immensenumber of ways, generally with no



115

attempt at precision whatsoever. It is also onewith a decidedly unsavory history.1 It is not at all clear that
it is worth explicating. Nonetheless,let us try .

The strongest senseof \emergence" known to me, and also the oldest, is the following. A property of
a composite object is emergent if it cannot be explained from the properties and interactions of the \lo wer
level" entities composing the object. Now, we cannot know that anything is emergent in this sense.At best
we can say that we don't yet have an explanation for a particular property, so for all we know it might
be emergent. To call something emergent is therefore not to say anything about the property at all, but
merely to make a confessionof scienti�c and mathematical incompetence. (Epstein (1999) provides many
examplesof explanations of phenomenaoncetaken to be exemplarsof emergence,from chemical a�nit y on
up.) Humilit y is all very well and good, but this is excessive.

A moremoderatenotion of emergenceis alsoonewhich is more interesting, and potentially says something
about the world, rather than our inabilit y to interpret it. In this view, emergent properties2 are ones
which arise from the interactions of the lower-level entities, but which the latter themselvesdo not display.
Standard examplesof this sort of emergenceare the laws of thermodynamics (individual moleculesdon't
have a temperature or a pressure),or e�cien t allocation3 of resourcesin various types of market economy
(Debreu 1959;Lange and Taylor 1938;Simon 1996;Stiglitz 1994), or collective oscillations in ecosystemsor
economies(Krugman 1996).

A number of authors (seeespecially Simon 1996; Dennett 1991; Holland 1998 and Auyang 1998) have
explored this sort of emergence,and while they have reached no de�nite conclusionsor formalizations, there
doesseemto be a consensuson two points. First, the variables describingemergent properties must be fully
determined by lower-level variables | must superveneon them, asthe philosopherssay (Kim 1998). Second,
higher-level properties are worthy of being called emergent only if they are \easier to follow," or \simplify
the description," or otherwise make our life, as creaturesattempting to understand the world around us, at
least a little easier.

Putting thesetwo ideastogether, we can actually de�ne emergence.Crutch�eld did so in his 1994papers
(1994a, 1994b), but I fear he was over-subtle, since very few people have picked up on it. The goal of this
section is to present his views, with a few modest technical additions, in a crushingly explicit manner.

11.2.1 Emergen t Pro cesses

For the rest of this section, I'll write as though we wereonly dealing with time series,but everything applies,
mutatis mutandis, to transducers (Chapter 7) as well. There are more subtle changesneededto deal with
spatial processes(Chapter 10), which I'll mention as they arise. Let's start by �xing just how easy it is to
predict a process.

De�nition 47 (E�ciency of Prediction) The e�ciency of prediction of a processis the ratio between its
excessentropy and its statistical complexity.

e =
E
C�

: (11.1)

It is clear from the Bounds of ExcessTheorem (Theorem 10) that e is a real number between0 and 1, just
as an e�ciency should be. We may think of it as the fraction of historical memory stored in the process
which does\useful work" in the form of telling us about the future. It is straight-forward to check that, for
any prescient state class bR , E=C� ( bR ) � e.

If C� = 0, there are two possibilities. One is that the processis completely uniform and deterministic.
The other is that it is I ID. In neither caseis any interesting prediction possible, so we set e = 0 in those

1For remarks on the association between the notion of emergenceand obscurantism in biology and social science,seeEpstein
(1999). For the connections between holism and totalitarianism, seePopper (1945, 1960).

2Or emergent phenomena or behaviors or structures or what-not; all of these terms are used, if not interchangeably, then
with an apparent conviction that they're close enough for government work.

3 Is \e�cien t allocation" an emergent property , an emergent phenomenon, or an emergent behavior ? Who can say?
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cases4

For spatial processes,e is the ratio between the densitiesof the excessentropy and the statistical com-
plexity, E loc =C�

loc .

De�nition 48 (Deriv ed Pro cess) One process,
$
S

0
, derives from another,

$
S, i� S0

t = f (
 
S t ), for some

measurable function f .
$
S

0
is called the derived or �ltered process,

$
S the original, underlying or raw process

This de�nition is intended to capture the idea of \sup ervenience";that is, oneset of variables is on a \higher
level" than another. We can think of f as a sort of �lter applied to the original process,passingthrough
only certain aspects of it.

For spatial processes,we keepthe requirement that f dependsonly on the history, but we do not require
that it be spatially local.

De�nition 49 (Emergen t Pro cess) A derived processis emergent if it has a greater predictive e�ciency
than the processit derives from. We then say the derived processemergesfrom the underlying process.

De�nition 50 (In trinsic Emergence) A process is intrinsically emergent if there exists another process
which emergesfrom it.

This formalizes the two intuitions we started with. And it is not trivial, becausethere are plenty of
derived processeswhose e�ciency of prediction is the same or even lower than that of the processthey
derive from. Moreover, once we have chosena new set of variables in which to describe a process(i.e. a
�lter f ), whether the new processis emergent is simply a fact about the dynamics of the raw process.And
so whether the underlying processis emergent is just a fact about its dynamics. Emergenceis thus intrinsic
and objective, and has nothing whatsoever to do with observers.

It may help to contrast this notion of emergencewith what peopleattempt to accomplishwith statistical
regression. There the goal is to \explain" all of the variance in the output by accounting for the e�ects of
all possibleinput variables. What we are attempting to do in looking for an emergent process,on the other
hand, is to �lter out everything we can | get rid of all the small-but-signi�can t inputs | so as to simplify
the relationship. We are not trying to explain everything we can measure; we are trying to �nd what's
intrinsically important in our measurements. Emergenceis anti-regression.5

11.2.2 Emergen t Structures Are Sub-Mac hines of the � -Mac hine

There is a sensein which the dynamics of a processare completely summarizedby its � -machine | so why
can't we use it to build a �lter? The following procedure, in fact, suggestsitself. Divide the � -machine
into sub-machines, i.e., strongly connectedcomponents, and label them all. Find all the transitions between
sub-machines, and give those labels too. Then apply the following �lter: at each time-step, check whether
the current causalstate and the previous state were in the samesub-machine. If they were,output the label
of that sub-machine. If they weren't, then the processhas moved from one sub-machine to another; output
the label of that transition.

If the sub-machineshave beenchosenappropriately, the processderived from this �lter will be emergent,
since knowing what sub-machine we are in will reduce statistical complexity without impairing predictive
power, or at least not impair it more than is gained by simpli�cation. In this case,we may call the sub-
machines emergent structures. For instance, a loop in the � -machine | a closedcycle of states | would
generally make a good sub-machine, and a �ne emergent structure. By extension,a (part of a) con�guration
generatedby the states-and-transitions in a sub-machine is also an emergent structure. The domains and
particles we saw when looking at spatial and spatio-temporal processeswereall examplesof � -machine based
�lters and emergent structures.

4 It's often tempting to imagine a family of processeswhere E and C � both tend to 0 in some limit, and to use L'Hopital's
Rule to calculate the limiting value of e, but I haven't found a way to make that precise.

5Thanks to Scott Page for pointing out this connection.
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11.2.3 Example: Thermo dynamics and Statistical Mec hanics

As I mentioned, many people (Crutc h�eld 1992; Sklar 1993; Holland 1998) claim that thermodynamic
regularities are emergent phenomena,emergingout of microscopicstatistical mechanics. Let's check whether
this agreeswith my de�nition, both as a sanity-check for the de�nition and an illustration of how it can be
applied.

Consider everyone's favorite companion from intro ductory statistical mechanics, a box full of gas. To
be more speci�c, consider a cubic centimeter of argon, which is conveniently spinlessand monoatomic, at
standard temperature and pressure.Using the well-known formula (Landau and Lifshitz 1980,sec.43), the
thermodynamic entropy is

S(N ; T; V) = N kB (log V=N + cv logkB T + � + cv + 1) (11.2)

where � is the \c hemical constant" of the gas, given by the Sackur-Tetrode formula (Landau and Lifshitz
1980, sec.45), � = 3

2 log m
2� &

2 and of coursecv = 3=2. Argon has an atomic massof just under 40. We are
taking P = 105Nm� 2, T = 293K, V = 10� 6m3. Thus N = 2:47� 1019 and

S(N ; T; V) = 6:3 � 10� 3J=K (11.3)

= 6:6 � 1020 bits ; (11.4)

using the conversion factor kB log2 = 1 bit. Now, at the micromechanical level (almost by de�nition) the
dynamicsof the gasareMarkovian, soeach microstate is a causalstate. If wesamplethe gasat time intervals
of (say) 10� 9 seconds,we have a �rst-order Markov process.Then E = C� � h� (Feldman and Crutch�eld
1998a),sowe needto know h� to calculate the e�ciency of prediction. As it happens,Gaspard (1998,ch. 0)
estimates the entropy rate of one cubic centimeter of argon at standard temperature and pressureto be
around 3:3 � 1029 bits per second. The e�ciency of prediction is thus about 0:5, taking a time-step of one
nanosecond. If we use a much larger time-step, the predictive e�ciency of the system is essentially zero,
which re
ects the fact that the gas is very rapidly mixing.

Now considerlooking at the macroscopicvariables; it will be convenient to only considerextensive ones,
so let's use total energy, particle number and volume, rather than the traditional number, pressureand
volume. (Recall that E = N cv kB T.) Their mean values are, of course,E = :16 joules, N = 2:5 � 1019 and
V = 10� 6m3. All of them 
uctuate with a Gaussiandistribution, but let's consider just 
uctuations in E .
De�ne a = E � E . By the Einstein 
uctuation formula (Keizer 1987,ch. 2), the variance is

� 2 = � kB C � 1 (11.5)

where C = @2S=@a2. Explicitly evaluating that, C = � N cv kB =E
2

= � 2:3 � 10� 2J� 1K � 1, and so � 2 =
6:1 � 10� 22J2.

Assumewe are sensitive to measurements at absurdly small level of � E = 10� 15 joules. Then the entropy
of the macrovariable energy is

H [E ] =
1
2

log2 2� e
� 2

� E 2 (11.6)

� 33:28 bits : (11.7)

(If we set � E to a much larger value, there isn't any noticeable uncertainty in the macrovariable!)
What of the dynamics? Supposethat the gasstays in the linear regime. Then deviations from equilibrium

values are followed by (on average) exponential return to equilibrium, plus noise. The dynamics of the
macrovariables, too, are Markovian. The relevant stochastic di�eren tial equation is (Keizer 1987,p. 68):

da
dt

= LC a + f ; (11.8)

where L , the phenomenological coe�cient , governs the mean rate of decay of 
uctuations, and f is white
noise, i.e., f (t) = 0 and f (t + � )f (t) = 2kB L� (� ). Ignoring (as we did above) 
uctuations and coupling in
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the other extensive variables, we get (Balian 1991, sec.14.2.3) L = �T 2, where � is the heat conductivit y.
For argon at STP, � � 1:017� 10� 9 watts per kelvin, so L � 8:6 � 10� 5 watt-k elvins. If we solve Eq. 11.8,
we �nd that the conditional distribution at time t is Gaussian,with a conditional variance given by (Keizer
1987,Eq. 1.8.12)

� 2(t) = � 2
0

�
1 � e2LC t � : (11.9)

If we take our time-step to be one millisecond, � 2(10� 3s) � 2:0 � 10� 9� 2
0 . The entropy of the conditional

distribution, coarse-grainedat the samelevel asbefore, is 4.4 bits, and this is the entropy rate per time-step
(i.e. h� = 4:4 � 103 bits/second). So the e�ciency of prediction is 0.87. If we used the sametime-step of
10� 9sasbefore,the e�ciency is indistinguishable from 1. Hencethermodynamicsemergesfrom the statistical
mechanics,and doessovery strikingly , sincealmost all of the information neededat the statistical-mechanical
level is simply irrelevant thermodynamically.

11.3 Self-Organization De�ned

Recall from Section 4.1.1 that the theory of causalstates and � -machines requires only conditional station-
arit y, not strict stationarit y. When the processwe are dealing with is non-stationary, the distribution of its
causalstateschangesover time, and so the statistical complexity is a function of time, and we ought to write
it C� (t) (cf. Crutch�eld 1992). Under what conditions will C� (t) be an increasingfunction of time?

Here is an example to serve as an intuition pump. Prepare an ensemble of copiesof a processso that
all the copiesstart in the samecausalstate. C� (t) is then log1 = 0. Informally , there is only one thing the
system can do, so it is simple. Suppose,however, that sometransitions lead from this initial state to other
causal states, speci�cally to a chain of causal states of period p, and that these states are very unlikely to
lead back to the original state. Then C� (t) will increaseover time from 0 to � log2 p. That is to say, when
a system spontaneously goes from uniform to periodic behavior (which is one of the canonical examplesof
self-organization), its statistical complexity increases.

What I want to propose,therefore, is that an increasein statistical complexity is a necessarycondition for
self-organization. While the fundamental causalarchitecture remains unchanged,the degreeof organization
| measuredby the amount of information neededto place the processin a state within the architecture |
is variable. (Cf. the \kno wledgedi�usion" of Crutch�eld (1992).) In every caseI can think of, wherepeople
are prett y well agreedthat self-organizationhappens,it's alsoprett y manifest that the statistical complexity
increases.

If we comparethis criterion for self-organizationwith the de�nition of emergencein chapter 11.2, we see
that self-organizationincreasescomplexity, while emergence,generally speaking, reducesit, or requiresus to
useit more e�ectiv ely for prediction. At �rst glance,then, self-organizationand emergenceare incompatible,
but this is too hasty. Self-organizationis somethinga processdoesover time, like being stationary, or having
a growing variance. Emergenceis, primarily , a relation betweentwo processes,one of which is derived from
the other, like \has a smaller entropy rate than". By extension, a processhas the property of emergenceif
any of its derived processesis emergent (comparable to \is a function of a Markov chain"). There is nothing
contradictory in saying that a processis becomingmore structurally complex, while at the sametime saying
that there is another description of the processwhich is always simpler than the raw data.

We can now make senseof the way so many authors have linked self-organizationand emergence.When
something self-organizes,it becomesmore statistically complex, i.e., optimal prediction requiresmore infor-
mation. A cognitively-limited observer (such as a human scientist) is therefore motivated to look for a new
way of describing the processwhich has a higher predictive e�ciency . That is, the desireto describe things
simply makes us look for emergent behavior in self-organizing systems. (Imagine describing an excitable
medium, not by saying where the spiral wavesare centered and how their spirals curve, but by giving the
complete �eld of molecular concentrations at each point.) Emergencewithout self-organization is de�nitely
possible| for example,we've seenthat thermodynamics emergesfrom statistical mechanics in a stationary
(and so de�nitely non-self-organizing) system. I presume there can be self-organizing, non-emergent pro-
cesses,though it might be that someconstraint on possible� -machines rules that out. Assuming, however,
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that self-organizationdoesnot imply emergence,then it is conceivable that there areprocesseswhich organize
themselves into conditions so complex that no human being can grasp them. They would be so organized,
in other words, that they would look very like noise. (Cf. Crutch�eld and Feldman 2001a;Crutch�eld and
Feldman 2001b;Lem 1968/1983.) Emergencemay be a pre-condition of detectable self-organization.

There is an obstacleblocking the way to simply de�ning self-organization as increasingstatistical com-
plexity. This is that a rise in C� doesnot distinguish self-organization from getting organized by something
else6. We want, in Grassberger's (1986) phrase, \self-generated complexity," not any other sort. This leads
me to the following de�nition.

De�nition 51 (Self-Organization) If a time series (resp. spatial process) is dynamically autonomous,

then it has self-organizedbetween time t and time t + T if and only if C� (t) < C� (t + T) (resp., C�
loc (t) <

C�
loc (t + T)).

It would seemsafeenough to apply this de�nition to non-feedback transducers if the complexity of the
input processis zero, and similarly to non-autonomousspatial systems. It is not clear, however, how much
an input with positive C� can contribute to increasingthe organization of a transducer or a spatial process.

Second,it would be nice to test the formalization, by applying it to a large number of caseswhere we
have clear intuitions, even proofs (Hanson and Crutch�eld 1997)and seeingthat it agreeswith our intuition,
beforeaccepting it. The largest classof exampleswhich combine intuitiv e consensusabout self-organization,
a guaranteed absenceof outside organizers,and mathematical tractabilit y are cellular automata.

What I hope to do in future work, therefore, is the following. I will assemble a large collection of two-
dimensional CA rules, where a consensusexists as to whether or not they are self-organizing. Then, for
each CA rule, I'll produce a large sampleof its evolution from di�eren t random initial conditions, using the
CAM8, a parallel computer specialized for running cellular automata7. This will give me enough data for
the automatic reconstruction of each CA's � -machine, and the estimation of C�

loc as a function of time.
Finally, I'll be able to seewhether the rules which peoplethink are self-organizinghave increasingstatistical
complexity or not. It'll be particularly nice to be able to look at families of rules sharing a commonform, and
di�er only by parameters, since someof them (e.g., the cyclic cellular automata) self-organize,but others

don't, and the C�
loc test ought to pick that up.

11.4 What Remains to Be Accomplished, or Things That Are Not
Yet Theorems

11.4.1 Non-Stationarit y

As I mentioned in Chapter 4, we do not needto assumewe are dealing with stationary processes,merely with
onesthat are \conditionally stationary," i.e., the distribution of futures, conditional on histories, must be
independent of when the history comesto an end. The conditionally-stationary processesform a comfortably
large and roomy class,but they're not everything, and it would be nice if we could write down computational
mechanics in a way which didn't invoke any sort of stationarit y assumption.

The obvious thing to do, in the caseof time series,is to say that
 
s t 1 and

 
s t 2 are causallyequivalent when

P(
!
S t 1 2 F j

 
S t 1 =

 
s t 1 ) = P(

!
S t 2 2 F j

 
S t 2 =

 
s t 2 ). If the processis conditionally stationary, this reducesto the

normal notion of causalstate. Thesestatesought to be optimal minimal predictors, by the usual arguments,
and I suspect they'll have deterministic transitions, though that's harder to see.What the � -machine would
look like, I really have no idea.

6 I �rst learned of this point from Mitc hell Porter.
7For details on the CAM8, see http://www.im.lcs.mit.edu /ca m8/. For an even more detailed description of an earlier

machine in the series, the CAM6, seeTo�oli and Margolus (1987).
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11.4.2 The Perm utation Cit y Problem

I haven't even bothered to state asan assumption that the order of observations in time and spaceis a given.
However, if we're eliminating a priori assumptions,that one is questionabletoo. It may well be that if we
re-orderedour data in somefashion, it would becomeeasierto predict | in which case,why not do it? Why
not form the causalstates and the � -machine on the re-organizeddata which are most e�cien tly predicted?
Let's call this the Permutation Cit y Problem, after the novel by Greg Egan (1994), which employs a similar
conceit8. This feelsvery silly, but what, exactly, is wrong with it?

The basic 
a w seemsto be that re-arranging the data shouldn't be free; it takes a certain amount of
information to specify the newarrangement, and the re-orderedpredictor shouldbepenalizedby this amount.
(Cf. the \recoding equivalence" of Crutch�eld (1990).) If we have n data-points, specifying a permutation
of them requires logn! bits, so predictive abilit y has to increaseby log n !

n bits per symbol, or approximately
logn bits per symbol as n gets large. That the predictive advantage of the rearrangedseriesshould increase
at least logarithmically with n, for arbitrarily large n, is more than a bit implausible. Moreover, we really
ought to perform the same rearrangement for every seriesfrom the sameensemble, if we want to capture
anything about the process, as opposed to a particular realization. On the other hand, if we re-arrange
the data at random, without performing any preliminary computations, then, almost by de�nition, we are
simply randomizing the data stream, and destroying any predictable patterns it may contain.

There is no rigorous version of this argument. However, in the 1930svon Mises (1928/1981) and Re-
ichenbach (Russell 1948) de�ned a \random collective" as, roughly, an in�nite population whose every
sub-population has the same distribution as the whole distribution. While this de�nition does not quite
work, subsequent research has shown that it is adequate if we restrict ourselves to sub-sampleswhich can
be speci�ed algorithmically (Salmon 1984). This suggeststhat it may be possibleto give a rigorous answer
to the Permutation Cit y Problem, if we agreethat only e�ectiv ely-speci�able permutations are allowed9.

11.4.3 Con tin uit y

Throughout this book, I have assumedthat space,time, and observablesare all discrete; this is in keeping
with all previous work on computational mechanics that I know of. It is fairly easy to formally extend
the de�nitions of causal states to continuous variables. For instance, for time serieswith continuous time
and values,we might say that two histories are causally equivalent when they give us the sameconditional
distribution over future tra jectories.10 There are three di�culties in the way of such a development.

First, it is not clear when the necessaryconditional probabilit y measureswill mathematically exist. The
regularity of conditional probabilities is quite easy for discrete processes;not so for continuous ones. It
becomesa problem of functional analysis,so the mathematical foundations, if we aim at keepingto even the
present standard of rigor, will get much more complicated. Still, we might invoke the physicist's licenseto
ignore foundations, on the grounds that if it works, the mathematicians will �nd a way of making it right.

Second,much of the information theory I'v e used this development becomesinapplicable. Entropy and
conditional entropy are de�ned for continuous variables, but they are coordinate-dependent | entropy is
di�eren t if distancesare measuredin meters or in inches. This is distressing and unphysical. But mutual
information is independent of coordinates, and so are statistical su�ciency and conditional independence,
so we might be able to recover most of the results by leaning on them. (The role of C� , for instance, might

8To be precise, the novel's premise is as follows. The basic constituen ts of realit y are an in�nit y of events. Every logical
possible relation or set of relations which generates a spatio-temp oral and causal ordering over some of those events leads to,
or rather is, a univ erse containing just those events in that order. All possible univ erses co-exist outside time (since time is
internal to univ erses), and all are equally real. For more on the generation of spatio-temp oral order from relations among events,
see Russell (1927, chs. 28{31). There it is proved that a countable in�nit y of (extended) events can generate a contin uum of
point-instan ts.

9The Permutation Cit y Problem is due originally to Jim Crutc h�eld (1990), who also put forth the core of the answer above.
The problem's most forceful current advocate is undoubtedly Murra y Gell-Mann, who I hasten to add is not responsible for the
name. A similar problem was considered earlier by Jorma Rissanen (1989, ch. 6), from whom I took the log n! idea.

10 Having just come in to possessionof a copy of Knigh t (1992), I suspect the resulting theory would look rather lik e his, but
I'm not sure. A detailed comparison between his theory and computational mechanics should be made.
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be taken by I (
 
S; S).)

Third, reconstruction from data becomesa lot harder. Even with the best analog instrumentation, we
will never have an exact record of a continuous time seriesover a certain interval, which is what we would
want. Even if we could get it, it would be hard (to say the least) to get repetitions of such a series,sothat we
could empirically estimate the necessaryconditional probabilit y densities. So it would seemthat continuous
computational mechanicscould never be applied. But this is too hasty: any statistical analysisof continuous
data facesthe sameproblem, which isn't any worse for computational mechanics than for other methods.
We might even join forceswith them, by, say, using a nonparametric technique to estimate the conditional
probabilities from sample data (Bosq 1998), or try �tting data to various basis functions (Crutc h�eld and
McNamara 1987). This would imposeprior restrictions on the function � , which is something we want to
avoid as much as possible,but, again, continuous computational mechanics certainly can't be worse in this
regard than the existing techniques.

The other out would be to make a virtue of our limitations and explore the computational mechanics,not
of continuous physical processes,but of continuous models of processes.For instance, the above de�nition
of causal states can be applied to the Wiener process,W (t): since, for any T > 0, W (t + T) � W (t) is
independent of all previous increments of the process,it is evident that each distinct value of W (t), each
distinct point in physical space,is a distinct causal state. This is a trivial example, but more interesting
processeswould yield to the samekind of analysis, with potentially interesting results, since very little is
known about continuous, stochastic computation.

11.5 What Is to Be Done, or, Neat Things to Hack

I want to closeby sketching out someareasin which computational mechanicscould be, and is being, applied.
One of the advantagesof an abstract theory is that, becauseit is free of substantiv e assumptions,it can be
applied to many problems which di�er, perhaps radically, in their substance. This is by no meansthe only
reasonto want a general,abstract theory, but it may be a relief to descendfrom the empyrean to the muck
of the lab-bench.

The ideasdescribed in this sectionweredeveloped in the Computation, Dynamics and Inferencegroup at
SFI, under the leadershipof Jim Crutch�eld. The terminology, in particular, is due to Jim. They represent
active areas of research, and in some casesof collaboration. When I have a particular debt to someone
outside the group, I'v e indicated it with a footnote.

11.5.1 The Real World

There are lots of data-setscrying out to be fed through � -machine reconstruction algorithms. Mostly these
are things where it's either very hard to comeup with a decent model from �rst principles, or there's a real
needto understand the intrinsic computation going on, or both. Most of the rest of this sectionwill be about
applications where exploratory work has beendone in the Computation, Dynamics and Inference group at
SFI.

A word �rst, though, about caseswhereit's just hard to comeup with a good model. There is a large area
in statistics, going by such namesas\non-parametric regression,"that tries to addressthe problem of �nding
predictive relationships betweenvariables,without the bene�t of a pre-setfunctional form for the relationship
(Vapnik 1979/1982; Ripley 1996). Neural networks, in someof their avatars, are nonparametric regression
functions (Zapranis and Refenes1999). Maybe the most elegant theory of nonparametric regressionis that
employing the piecewise-polynomial functions called \splines" (Wahba 1990). Computer scientists study
related techniques, typically in a lessrigorous, more pragmatic way, as \data mining" (Weissand Indurkh ya
1998). Generally speaking, nonparametric regressionmethods employ a classof regressionfunctions which
are \univ ersal approximators" | any well-behaved function can be approximated to arbitrary accuracy by
somemember of the class. (This is easily shown for neural networks, for instance.)

The di�cult y comeswhen you try to cashin on this promise. When using a neural network, for instance,
you must �x the architecture | somany nodes,in so many layers,and soon | and then train the network,
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given the data available. You then check its performance on new data, and decide whether or not it is
adequate; if not, there is nothing for it but to pick a new architecture and try again. Moreover, to avoid
over-�tting the training data, you have to start with small, simple, dumb networks, only going to more
complex architectures when it is clear that no simple one can do the job (Vapnik 2000); this is called
\capacit y control". But why should we expect that a simple relationship should always be well-represented
by a simple neural network? Maybe we should be using something else, like a spline, or a radial basis
function. (Just becausea seriesexpansionconvergesdoesn't mean that there isn't another expansionthat
convergesfaster; cf. Crutch�eld (1992)on the distinction betweencompleteand appropriate function bases.)
Indeed computational learning theory has examplesof problems that are easily learned using one classof
representation but intractable with another (Kearns and Vazirani 1994). And what is true, in theserespects,
of neural networks is true of splinesand all other conventional nonparametric methods.

It is not true, however, of � -machines and � -transducers. Sincecomputational mechanics actually builds
its models from data, architecture is not guessed but inferr ed. With the appropriate inferencealgorithm, the
simplest possiblearchitecture is inferred, eliminating the needfor explicit capacity control. In other words,
in almost any application domain where nonparametric or data-mining methods are used, computational
mechanics is at least a contender.

11.5.1.1 Turbulence

I am not going to even hint that computational mechanicswill solve the problem of turbulence (Frisch 1995).
But it is often important to have a good model of, say, the velocity 
uctuations at a point in a turbulent 
o w
(e.g., for climate models). This has inspired a coupleof attempts to infer causalstates and � -machines from
turbulent 
o w data (Palmer, Fairall and Brewer 2000; Nicholas Watkins, personal communication, 2000).
Thesee�orts should be revisited, using the new reconstruction algorithm developed here. It would be very
interesting to make an attack on how the statistical complexity and causalarchitecture of turbulence varies
with Reynoldsnumber (and, possibly, other control parameters). We might, for instance, settle the question
of whether the transition to turbulence is self-organizing,with which we began.

11.5.1.2 Ph ysical Pattern Formation

There are now a huge number of situations where experimentalists can reliably produce self-organizedpat-
terns of speci�c types. Excellent image-sequencedata are available from many of them, thanks to digital
cameras.An obviousbut worthwhile project would beto takesuch a data set (from the Belousov-Zhabotinskii
reagent, say) and feedit through a spatial � -machine reconstruction algorithm. The output | the � -machine
| should include representations of all the acknowledgedemergent structures (in the BZ case,spiral waves
and organizing centers). If it does not, something is seriously wrong with the computational mechanics
approach, simply becausewe know what's going on, macroscopicallyanyway, in thesepattern-formers. Once
experimentalists get comfortable with this sort of analysis, it will be natural for them to do it on new
pattern-formers they encounter or devise,including onesfrom outside the lab.

11.5.1.3 Biosequences

About the secondapplication of computational mechanicspeoplesuggest,on learning of it for the �rst time,
is \DNA" 11. Simply taking genomedata and running it through an inferencealgorithm would be of relatively
little interest, though it might turn up something. More promising would be to take ensembles of sequences
which are known to have di�eren t functional properties (e.g., coding or non-coding, or belonging to di�eren t
regulatory complexes), build their � -machines, and seehow those di�er. 12 These could even be used to

11 I'm so sick of the �rst application people suggest I won't even name it.
12 We don't even have to do this for genes in the strict sense. For instance, single-stranded RNA folds up on itself, owing

to interactions between basesalong the strand, much as proteins do. While predicting the shape into which proteins will fold
is very di�cult, the RNA folding problem is fairly easily solved, at least for the ground-state conformation of the secondary
structure. It's prett y simple to get large databases of RNA sequencesand their folds. It would then be easy to construct the
� -machine for all the RNA sequenceswhich fold into the same con�guration. (Thanks to Walter Fontana for suggesting this
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identify the family to which newly-sequencedgenesbelong; hidden Markov models are already usedfor this
purpose,but those HMMs are constructed by the usual ad hoc methods, and could certainly be improved.
An � -transducer, built from the samedata-set, would provide classi�cations directly.

11.5.1.4 Neural Co ding

Neuronsconvey information to oneanother by meansof brief, intense,highly-stereotyped electrical impulses
known as action potentials or spikes.13 Presumably, the pattern of spikesone neuron receivesfrom another
| the spike train | conveys information about what the upstream neuron has computed about the world,
itself basedon the spike trains it received. Ultimately , spike trains encode information about the world, or
at least about the organism's sensoryorgans. The neural coding problem (Rieke, Warland, de Ruyter van
Steveninck and Bialek 1997) is, simply, How is that information encoded? Given a spike train, how ought it
be decoded? If we regard the neuron as a transducer, this amounts to attempting to model its input-output
relation. Remarkable progress has been made recently by applying techniques from information theory
(Dimitro v and Miller 2001) and by calculating the �rst Wiener kernel (Dayan and Abbott 2001), i.e., by
attempting linear decoding.

Clearly, we should calculate � -transducers and so nonlinear decoding \to all orders". The transducer
states would tell us what features of input spike trains a given neuron is actually sensitive to, for instance,
and so what kinds of computations it is able to perform. The full � -transducer would allow us to calculate
what ensemble of inputs will maximize the information content of the neuron's output, and seewhether,
as many speculate (Rieke, Warland, de Ruyter van Steveninck and Bialek 1997), and seemsreasonableon
evolutionary grounds, the distribution of natural stimuli is closeto that which maximizesoutput-information.

Neuronsdo not work in isolation; in particular, it's prett y well establishedthat \p opulation codes" are a
key part of neural representation and computation (Abb ott and Sejnowski 1998). In thesecases,the actions
of individual neurons are comparatively insigni�can t, information being encoded in the pattern of activit y
acrossthe population. There is no in-principle reasonwhy we could not construct a single � -transducer for
the entire population and useit to �gure out the population code, just aswe could for an individual neuron.
In fact, by extending the results of the section on feedback above, we could in some sensecompose the
population's � -transducer from those of the individual neurons.

11.5.1.5 Signal Transduction, Gene Regulation, and Metab olic Net works

Signal transduction is the processby which cells detect and respond to environmental conditions, such as
the concentrations of di�eren t sorts of chemicals, pressure,heat, light, electrical �elds, and so forth. It is
carried on by an intricate array of specialized and general-purposesignaling molecules,ranging from large
protein complexesto calcium ions. Signal transduction is intimately related to generegulation, the turning
on or o� of the expressionof the various genesin the cell's genome,or more generally the control of the rate
at which di�eren t genesare expressed.Generegulation, in turn, is part of the control of metabolism, which
is also connecteddirectly to signal transduction.14

Hugevolumesof data are now becomingavailable about all three processes,largely becauseof new experi-
mental devices,such as\gene chips", which record the expressionlevelsof thousandsof genessimultaneously.

application.)
13 They also communicate by chemical means, but let's pretend otherwise for now.
14 The literature on all these biological processes,taken separately, is vast, and by some estimates doubles every twelve

months. Gonick and Wheelis (1991) has a characteristically engaging discussion of the fundamentals of gene regulation. For
philosophical views of these topics, seeMono d (1970/1971) and Goodenough (1998). Loewenstein (1999), while written by a
very distinguished experimenter, is full of misconceptions about information theory and nonlinear dynamics.

Hancock (1997) is intended as an intro duction to signal transduction for biology students; it is straigh tforw ard, but presumes
a high capacity for memorizing molecular names. Ptashne (1992) describes one of the very �rst instances of gene regulation
to be understo od in full detail, but mercifully stu�s the experimental details into appendices. Krauss (1999) was authoritativ e
when it was published, and so should not be absurdly out of date when you read this. Milligan (1999) and Carraway and
Carraway (2000) have practical details on experimental systems and approaches.

Quantitativ e treatmen ts of these topics are rare. Fell (1997) may be the best point of entry for physicists or mathematicians.
I have not had a chance to read Bower and Bolouri (2001).
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Thesedata setscry out for statistical modeling, but very little is known about the kinds of relationships we
should expect to �nd in the data, meaning that traditional statistical methods, attempting to estimate pre-
de�ned parameters,are simply not applicable. This has lead those doing bioinformatics (Baldi and Brunak
1998) to develop non-parametric and data-mining methods.

The role of computational mechanics here would be, again, to provide a method for discovering patterns
in the data which does not require prior assumptions about what those patterns are like, yet has proven
optimalit y properties, and will �nd any patterns in the data which have any predictive power. The � -
transducer estimated from biological data would be an abstract model of the input-output characteristics
of the signaling or regulatory network that provided the data, including its computational abilities. The
information-pro cessingabilit y of a single cell is often considerable,even if it is not a nerve cell (Holcombe
and Paton 1998),and it would be very good to understand it, particularly sinceit's so important in keeping
us alive.

The � -transducer would also serve to constrain more conventional modelsof the functional and chemical-
kinetic architecture of the network, things of the \this kinase phosphorylates that enzyme" type: the con-
ventional models would have to reproduce the behavior of the � -transducer, would have to provide (in the
logical sense)models for it. But the constraint could also go the other way: given that we know a certain
functional pathway exists, it would be nice if our reconstruction algorithm could use that knowledge to
narrow its search. I have no idea of how to implement such constraints, but it would make for an important
addition to the theory.15

11.5.1.6 Agen ts

An agent, etymologically, is something which acts; in the lapidary formulation of Stuart Kau�man, a \thing
which does things to things". From the point of view of computational mechanics, an agent is simply a
transducer. The input seriesrepresents the agent's environment; the output, the actions the agent takes.
Putting things this way doesnot imply that the agent is limited to simple stimulus-responsebehaviors; that
would imply a memorylesstransducer. Instead the agent can do arbitrarily complicated internal information
processing,all of it represented by the internal states and connectionsof the � -transducer16. If an agent's
actions in
uence the part of its environment to which it is sensitive (generally the case),then the feedback
states represent the e�ects of its actions, its abilit y to make di�erences to its environment. The problem
confronting an adaptive agent, or an agent designer,isn't somuch selectinggood actions, asselectingactions
which produce desirablecausalstates.

Saying that the agent has \ an environment" does not mean that it will not, sometimes,be desirable
to explicitly represent the various parts of that environment, including, potentially , observable attributes
of other agents. Reconstructing the � -transducers from data for a population of interacting agents would
allow us to infer the network of interactions among them, as well as the intrinsic computations that take
place within each agent in its dealings with others. We might even be able to adapt the techniques of
spatial computational mechanics (Chapter 10) to characterize the global information-pro cessingcapabilities
of the population of agents | their collective cognition (Shalizi 1998a) and other distributed adaptations
(Crutc h�eld, personalcommunication), and do so in impeccably materialist, individualist terms.

A simple example17 may make these abstractions a bit clearer. Consider an ant. At any given time,
it is performing one of a number of behaviors, which are readily observed and categorized. In the course
of its activities, it moves about a varying physical environment, and comesinto contact with other ants,
performing other behaviors. From time to time, the ant switches behaviors. Take the state of the ant's
immediate physical environment, and the outward behavior of the ant it is currently dealing with (if any),
as the input. The output is the manifest behavior of the ant. By treating it as a transducer, we seehow the

15 I am grateful to Ary aman Shalizi for suggesting this application, and educating me about signal transduction.
16 Since a transducer is a channel with memory, an adaptiv e agent is a learning channel | a pun for which Jim Crutc h�eld is

solely responsible. Actually , � -transducers very easily include the \op erator models" of psychological learning theory as special
cases(Bush and Mosteller 1955; Sternberg 1963; Holland 1990), but they can handle other modes of learning too, such as those
of Holland, Holy oak, Nisbett and Thagard (1986).

17 Suggested by Mic hael Lachmann. Cf. Delgado and Sol�e (1997).
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ant's past history, physical environment, and dealings with other ants control its task-switching. We could
also build transducers for all the other ants in the colony (perhaps by treating things like caste as �xed
inputs), and ultimately composethem into the global � -machine for the ant colony.

11.5.2 The Dynamics of Learning

Computational mechanics sets limits on how well processescan be predicted, and shows how, at least in
principle, those limits can be attained. � -machinesare what any prediction method would build, if only they
could. But any learning problem which is formal and de�nite enough that we can say whether or not it's
beensuccessfullysolved is also a prediction problem, or at least equivalent to one (Thorn ton 2000). So, in
a sense,� -machines are also what every learning method wants to build. Computational mechanics thus
has someimportant things to say about how well learning can succeedin di�eren t environments, and what
optimal learning looks like (Shalizi and Crutch�eld 2000c).

Conversely, when we try to reconstruct an � -machine from actual data, we are engaging in a kind of
learning, or at least our code is. If we want to learn well, i.e., do reconstruction well, we need to take
into account results from learning theory about when and how learning is possible. I have already gestured
at some results of this sort (for instance, claiming that constricting the spaceof possible models speeds
convergenceon the best one), but the literature has quantitativ e and powerful results. Unfortunately , most
of them assumeboth a �xed mode of representation (a �xed model class) and I ID data. Developing a
quantitativ e learning theory for � -machines, therefore, will mean extending statistical learning theory to
dependent data. The ultimate goal would be a theory of learning in a changing environment, where the
learner is itself a dynamical system | to understand the dynamics of learning, in Crutch�eld's phrase.

Animals prove that this kind of learning is possible,and set a lower bound on how well it can be achieved:
anything a seaslug, a lorikeet, or a tenured professorcan do, a learning algorithm can do. What is not clear
is that any of them, even the most highly adapted of them18, learns as well as possible, i.e. that any of
them attains the upper bound on learning abilit y, if there is one. To answer that question, we needtheory,
especially the kind of optimalit y theory computational mechanics is able to provide.

11.5.3 Phenomenological Engines

\Phenomenology", for physicists, is the study and modeling of phenomena,without much if any attempt
to get at underlying mechanisms19. An immenseamount of what peopledo in applied science,engineering,
and related technical �elds is basically phenomenology. They need to make day-to-day predictions, but
either don't know the underlying mechanisms,or those mechanismsare too cumbersometo usefor practical
problems. Empirical regularities must take their place. Sometimesentire �elds are devoted to teasing
such regularities out of data; econophysics, for instance, consists of little more than attempts to get the
phenomenologyof �nancial time seriesright (Mantegna and Stanley 2000).

More respectably, phenomenologyis often a crucial preliminary to understanding mechanisms, sincean
accurate knowledge of the phenomenaand their relations constraints mechanical models; the classic case
is the relationship betweenMendelian and molecular genetics. The former is quite abstract, merely saying
that there are causalfactors, called genes,which in
uence the observable traits of organismsand are passed,
in a certain manner, from parents to o�spring. This is enough to have very important consequences,for
instance, most of evolutionary genetics(Gillespie 1998), but it's quite mechanism-free;it is even compatible
with the assumption that genetic in
uences are mediated by immaterial souls. Molecular geneticsprovides
all the grubby mechanical details missing from Mendelism and is in many casesmuch more accurate into
the bargain; but we were only led to it becauseit at least approximately ful�lled Mendelian expectations.20

18 The sea slug.
19 \Phenomenology" in philosophy also disdains mechanisms, but for entirely di�eren t, and far lesscreditable, reasons(Husserl

1913/1931; Kolak owski 1975; Gellner 1974).
20 The relationship between the abstract, structural theory and the mechanical one is somewhat lik e that between an axiom

system and one of its models in logic (Manzano 1990/1999), but not quite, becausethe abstract theory may only approximate
the more realistic one.
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I touched on this brie
y when consideringempirical applications above.
In computational mechanics, we have an automatic method for doing phenomenology. An � -machine

reconstruction algorithm takesin data and givesback a representation of causalpatterns, suitable for usein
prediction or intervention, \un touched by human hands". Such an algorithm is a phenomenological engine
or phenomenologimat21 . There is no in-principle reasonwhy they could not becomefast, reliable, standard
piecesof software, with potentially amusing and even important consequences.They would spell the end of
on-line gambling and human weathermen;but alsostock-market quants, biomedical statisticians, many sorts
of engineer,and routine medical diagnosticians22. Even data-analysts at high-energy physics experiments
will �nd it hard to justify their existence| oncea phenomenologimatgets written in Fortran.

21 Thanks to Jon Fetter for these names.
22 It has been known for a long time that, in many areas, human clinical judgment is signi�can tly less accurate than the

results of simple linear decision rules (Dawes, Faust and Meehl 1989). Phenomenologimats could invade domains where linear
rules do not apply, but nonlinear ones do.
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App endix A

Mathematical Review

A.1 Equiv alence Relations and Partitions

The following de�nitions and properties are well-known, and may be found in almost any book on abstract
algebra or set theory.

De�nition 52 (Equiv alence Relation) An equivalencerelation � on a set A is a relation on A that is
re
exive, symmetric and transitive:

Re
exiv e : 8a 2 A a � a (A.1)

Symmetric : 8a; b 2 A (a � b) , (b � a) (A.2)

Transitive : 8a; b;c 2 A (a � b) ^ (b � c) ) (a � c) (A.3)

De�nition 53 (Equiv alence Class) An equivalenceclasse in A is a maximal sub-setof mutually equiv-
alent elements: for all a 2 e, a � b i� b 2 e. The equivalence class containing a is sometimeswritten [a].
The collection of all equivalence classesinduced by � in A is written A= � .

De�nition 54 (P artition) A partition P of a set A is a classP0; P1; : : : of mutually exclusiveand jointly
exhaustivesubsetsof A:

Mutually exclusive : 8Pi ; Pj 2 P Pi \ Pj = ; (A.4)

Jointly exhaustive : 8a 2 A; 9Pi 2 P a 2 Pi (A.5)

The members of P are called the cells of the partition. If there is only one cell, the partition is trivial . If
each elementof A has its own cell, the partition is the identit y partition .

De�nition 55 (Re�nemen t) One partition P re�nes another partition, Q, if each cell of P is a subsetof
a cell of Q:

8p 2 P 9q 2 Q s:t : p � q (A.6)

P is �ner than Q; it is a re�nement of Q; Q is coarserthan P.

Prop osition 3 (Equiv alence Relations and Partitions) For any equivalence relation � on A, the col-
lection of equivalence classesA= � forms a partition of A. Conversely, every partition of A corresponds to
an equivalence relation.
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A.2 Information Theory

Information theory appeared in essentially its modern form with Shannon (1948), though there had been
predecessorsin both communications (Hartley 1928) and statistics, notably Fisher (see(Kullbac k 1968) for
an exposition of thesenotions), and similar ideasweredeveloped by Wiener and von Neumann, more or less
independently of Shannon (Wiener 1961). Shannon and Weaver (1963) contains the classicpapers; Pierce
(1961) is a decent popular treatment.

Appendix A.2.4 lists a number of useful information-theoretic formul�, which get called upon in our
proofs. Throughout, our notation and style of proof follow those in (Cover and Thomas 1991), the de�nitiv e
modern reference.

A.2.1 Entrop y De�ned

Given a random variable X taking values in a countable set A , the entropy of X is

H [X ] � �
X

x 2A

P(X = x) log2 P(X = x) ; (A.7)

taking 0 log0 = 0. Notice that H [X ] is the expectation value of � log2 P(X = x) and is measuredin bits of
information. Caveats of the form \when the sum convergesto a �nite value" are implicit in all statements
about the entropies of in�nite countable setsA .

Shannoninterpreted H [X ] as the uncertainty in X . (Those leery of any subjective component in notions
like \uncertain ty" may read \e�ectiv e variabilit y" in its place.) He showed, for example, that H [X ] is the
mean number of yes-or-noquestionsneededto pick out the value of X on repeated trials, if the questions
are chosento minimize this average(Shannon 1948).

A.2.2 Join t and Conditional Entropies

We de�ne the joint entropy H [X ; Y ] of two variables X (taking values in A) and Y (taking values in B) in
the obvious way,

H [X ; Y ] � �
X

(x;y )2A�B

P(X = x; Y = y) log2 P(X = x; Y = y) : (A.8)

We de�ne the conditional entropy H [X jY ] of one random variable X with respect to another Y from their
joint entropy:

H [X jY ] � H [X ; Y ] � H [Y ] : (A.9)

This also follows naturally from the de�nition of conditional probabilit y, since P(X = xjY = y) � P(X =
x; Y = y)=P(Y = y). H [X jY ] measuresthe mean uncertainty remaining in X oncewe know Y .

A.2.3 Mutual Information

The mutual information I [X ; Y ] betweentwo variables is

I [X ; Y] � H [X ] � H [X jY ] : (A.10)

This is the average reduction in uncertainty about X produced by �xing Y . It is non-negative, like all
entropies here, and symmetric in the two variables.

The conditional mutual information I [X ; Y jZ ] is

I [X ; Y jZ ] � H [X jZ ] � H [X jY; Z ] : (A.11)

It is alsonon-negative and symmetric in X and Y. It can be larger or smaller than the unconditional mutual
information.
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A.2.4 Information-Theoretic Form ul�

The following formul� proveuseful in the development. They arerelatively intuitiv e,givenour interpretation,
and they can all be provedwith little more than straight algebra;seeCover and Thomas (1991,ch. 2). Below,
f and g are functions.

H [X ; Y ] = H [X ] + H [Y jX ] (A.12)

H [X ; Y ] � H [X ] (A.13)

H [X ; Y ] � H [X ] + H [Y ] (A.14)

H [X jY ] � H [X ] (A.15)

H [X jY ] = H [X ] i� X is independent of Y (A.16)

H [X ; Y jZ ] = H [X jZ ] + H [Y jX ; Z ] (A.17)

H [X ; Y jZ ] � H [X jZ ] (A.18)

H [X ] � H [X jY ] = H [Y ] � H [Y jX ] (A.19)

I [X ; Y ] � H [X ] (A.20)

I [X ; Y ] = H [X ] i� H [X jY ] = 0 (A.21)

H [f (X )] � H [X ] (A.22)

H [X jY ] = 0 i� X = f (Y ) (A.23)

H [f (X )jY ] � H [X jY ] (A.24)

H [X jf (Y )] � H [X jY ] (A.25)

I [f (X ); g(Y)] � I [X ; Y ] (A.26)

I [f (X ); g(Y)jZ ] � I [X ; Y jZ ] (A.27)

Eqs. A.12 and A.17 are called the chain rules for entropies. Strictly speaking, the right hand side of Eq.
A.23 should read \for each y, P(X = xjY = y) > 0 for one and only one x".

A.3 Statistical Indep endence and Conditional Indep endence

De�nition 56 (Statistical Indep endence) Two random variablesX and Y are statistically independent
i� their joint probability distribution factors:

P(X = x; Y = y) = P(X = x)P(Y = y) (A.28)

or, equivalently, conditioning the one on the other makesno di�er ence:

P(X = xjY = y) = P(X = x) (A.29)

P(Y = yjX = x) = P(Y = y) (A.30)

The classictreatment of statistical independenceis Kac (1959).

Prop osition 4 (Statistical Indep endence and Mutual Information) (Cover and Thomas 1991, p.
27) X and Y are independent i� I [X ; Y ] = 0.

Vitally important for our purposesis the derivative notion of conditional independence.

De�nition 57 (Conditional Indep endence) Two random variables X ; Y are conditionally independent
given a third, Z , (or \independent given Z ") if and only if

P(X jY; Z ) = P(X jZ ) (A.31)
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or, equivalently,

P(X ; Y jZ ) = P(X jZ )P(Y jZ ) (A.32)

When this relation obtains, we write X j= Y jZ .

Prop osition 5 (Conditional Indep endence and Mutual Information) (Cover and Thomas 1991, p.
27) X j= YjZ i� I (X ; Y jZ ) = 0.

A.3.1 Prop erties of Conditional Indep endence

We list only those we need. Monographs on graphical models (Pearl 2000; Spirtes, Glymour and Scheines
2001) contain more extensive lists.

(A j= B jCD) ^ (A j= DjCB ) ) (A j= B DjC) (A.33)

(A j= B CjD) ) (A j= B jCD) (A.34)

(A j= B jC) ^ (A j= DjCB ) ) (A j= B DjC) (A.35)

Life would be much easierif

(A j= B ) ) (A j= B jC) (A.36)

(A j= B jC) ) (A j= B jCD) (A.37)

but sadly, neither of these implications holds in general; adding a conditional variable can make A and B
dependent again!

The following property, while not included in most lists of conditional independenceproperties, is of some
useto us:

(A j= B jC) ) (A j= f (B )jC) ^ (A j= B ; f (B )jC) (A.38)

for any measurable, nonrandom function f . It follows directly from the combination of Eq. A.27 and
Proposition 5.

There is an important connection betweenconditional independenceand statistical su�ciency; seeAp-
pendix A.5 below.

A.4 Automata Theory

De�nition 58 (Formal Language) A formal languageL over the �nite alphabet � is a subsetof � � |
the set of all possiblewords, or strings, made up of symbols from � .

De�nition 59 (Determinism) An automaton is deterministic or hasdeterministic transitions if, given its
current state and its next input, there is only one possiblenext state for it.

This de�nition often causesconfusion, sincemany stochastic automata (i.e., oneswith probabilistic transi-
tions) are deterministic in this sense.But it is too thoroughly entrenched in computer scienceto be changed.

De�nition 60 (Deterministic Finite Automaton) A deterministic �nite automaton (DFA) M is de-
�ne d as a 5-tuple:

M = f Q; � ; � ; q0; F g ; (A.39)

where Q is a �nite set of states, � is an alphabet, q0 2 Q is the initial state, F � Q is a set of �nal states,
and � : Q � � ! Q is a transition function: � (q; a) = q0, where q; q0 2 Q and a 2 � .
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A DFA can be used to read, or scan, words w = w1 : : : wL over the alphabet �. Starting in the initial
state q0, the DFA reads the �rst symbol w1 of the word w. It then makes a transition to another state
q0 = � (q0; w1). The DFA then readsthe next symbol w2 and makesa transition to q00= � (q0; w2), and so on
until all symbols in w have been read or until an unde�ned transition is encountered. If, after reading w,
the DFA ends in a �nal state q 2 F , M accepts w; otherwise M rejects it.

De�nition 61 (Regular Language) A regular languageL is a formal languagefor which there exists a
DFA that accepts all words in L and rejects all words not in L .

Regular languagesare the simplest classof formal languagesin a hierarchy (the Chomsky hierarchy) of
languageclassesof increasingcomplexity (Lewis and Papadimitriou 1998).

There are generallymany DFAs that recognizethe sameregular languageL , but there is a unique minimal
DFA for L , which we write M (L ). (For a nice proof of this proposition, see(Lewis and Papadimitriou 1998).)
Similarly, for every DFA M there is a corresponding regular languageL(M ) consisting of all and only the
words that are acceptedby M .

De�nition 62 (Regular Pro cess Language) A regular languageis a regular processlanguage if every
subword of a word in L is also a word in L .

De�nition 63 (Pro cess Graph) A DFA is a process graph if its every state is both an initial and an
accepting state.

The DFAs corresponding to regular processlanguagesare processgraphs, and vice versa (Hanson and
Crutch�eld 1992).

De�nition 64 (Finite State Transducer) A �nite-state transducer (FST) is a �nite automaton with two
kinds of symbol associated with each transition: inputs and outputs. An FST R is de�ned by a 7-tuple:

R = f Q; � in ; � out ; � ; �; q0; F g ; (A.40)

where Q; � ; q0; and F are as in a DFA, � in is the input alphabet, � out is the output alphabet, and � :
Q � � in ! � out is the observation function: � (q; a) = b where q 2 Q, a 2 � in , and b 2 � out . An FST
e�ectively implements a mapping f R from one languageover � in to another languageover � out . In other
words, it readsa word w 2 � �

in and transformsit to another word w0 2 � �
out by mappingeach symbol wi 2 � in

to a symbol w0
i 2 � out such that w0

i = � (q; wi ), where q 2 Q is the current state of R when reading wi .

In formal language theory, languagesand automata play the role of sets and transducers the role of
functions.

A.5 Su�cien t Statistics

De�nition 65 (A Statistic) Let X be a random variable taking values from X . Then a statistic T on
(or \over") X is any measurable, non-random function of X , i.e., T = f (X ). To each statistic T there
corresponds a partition T of X .

Remark 1. It is common to de�ne the \same" statistic over any number of samplesX 1; X 2; : : : X n taken
in the samespace,such as a stochastic process. For simplicit y, what follows always writes X as a single
variable, but this should be kept in mind.

De�nition 66 (Predictiv e Su�ciency) A statistic T over a random variable X is a su�cient statistic
for predicting another randomvariable Y i� and only if P(Y jT = f (x)) = P(Y jX = x), 8x. If T is su�cient,
then we also say that its associated partition T of X is su�cient.
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Remark 1. Su�ciency is important to prediction becauseit can be shown that, for any prediction method
which usesa non-su�cien t statistic can be bettered by one which does. (A more precisestatement can be
found in Appendix D below.)

Remark 2. Predictive su�ciency is related to, but not identical with, the idea of parametric su�ciency .
That, roughly, is when a statistic contains all available information about the parameters of an unknown
distribution. That is, if the probabilit y distribution is parameterized by � , written P� , a statistic T is
parametrically su�cien t if and only if P� (X jT = t) = P� 0(X jT = t) for all � ; � 0. If � itself can be regarded
as a random variable (as in de-noising,Bayesianstatistics, etc.), then parametric and predictive su�ciency
are identical.

Lemma 37 (Su�ciency and Conditional Indep endence) Consider two random variables X and Y ,
and a statistic T on X . Then X j= YjT if and only if T is su�cient for predicting Y from X .

Proof. \Only if ": By conditional independence(Eq. A.31), P(Y jX ; T) = P(Y jT). But since T = f (X ), by
Lemma 39 P(Y jX ; T) = P(Y jX ). (Informally , T is a \coarser" variable than X , so conditioning on T has
no e�ect oncewe've conditioned on X .) So P(Y jT) = P(Y jX ), which meansT is su�cien t. \If ": We start
with P(Y jT) = P(Y jX ). As before, sinceT = f (X ), P(Y jX ) = P(Y jX ; T). HenceP(Y jT) = P(Y jX ; T), so
(Eq. A.31), X j= Y jT. QED.

Prop osition 6 (Predictiv e Su�ciency and Mutual Information) (Cover and Thomas 1991, p. 37;
Kul lback 1968, sec. 2.4{2.5) T is a su�cient statistic over X for predicting Y if and only if I (Y ; T) =
I (Y ; X ).

De�nition 67 (Minimal Su�ciency) A statistic T is a minimal su�cien t statistic for predicting Y from
X if and only if it is predictively su�cient, and it is a function of every other su�cient statistic.

Remark. If T is the partition corresponding to the minimal su�cien t statistic T , then every other su�cien t
partition Q must be a re�nement of T . Turned around, no partition coarserthan T is su�cien t.
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App endix B

Mathematical Annex to Chapter 4

B.1 Time Reversal

We can imagine forming reversecausal statesfor futures, basedon their conditional distribution of histories,
i.e., assigning two futures to the samestate if and only if they have the sameconditional distribution for
histories. While both the reversestates and the ordinary, forward onesrender the past and the future of
the processconditionally independent, there is no other general,systematic relationship betweenthe two of
them. The past and future morphs can be very di�eren t, and while both sets of causal states render past
and future conditionally independent, one is a function of the past. In order to determine the reversecausal
state from the forward state, we must be able to determine the forward state from the future of the process;
to get the forward state from the reversestate, we must be able to determine the history uniquely from the
reversestate. If the forward and reversestates can both be inferred from each other, so that there is a kind
of time-reversal symmetry in the causalstates, then there must be a 1 � 1 correspondencebetweenfutures
and histories.

In general,
 
C� 6=

!
C� (Crutc h�eld 1992), whereas the entropy rates (Crutc h�eld and Shalizi 1999) and

excessentropies must be equal. And so on.

B.2 � -Mac hines are Monoids

A semi-group is a set of elements closedunder an associative binary operator, but without a guarantee that
every, or indeed any, element has an inverse (Ljapin 1963). A monoid is a semi-group with an identit y
element. Thus, semi-groupsand monoids are generalizationsof groups. Just as the algebraic structure of a
group is generally interpreted asa symmetry, we proposeto interpret the algebraicstructure of a semi-group
asa generalized symmetry. The distinction betweenmonoidsand other semi-groupsbecomesimportant here:
only semi-groupswith an identit y element | i.e., monoids | can contain subsetsthat are groups and so
represent conventional symmetries.

We claim that the transformations that concatenatestrings of symbols from A onto other such strings
form a semi-groupG, the generatorsof which are the transformations that concatenatethe elements of A .
The identit y element is to be provided by concatenating the null symbol � . The concatenation of string t
onto the string s is forbidden if and only if strings of the form st have probabilit y zero in a process. All
such concatenationsare to be realized by a single semi-group element denoted ; . Since if P(st) = 0, then
P(stu) = P(ust) = 0 for any string u, we require that ; g = g; = ; for all g 2 G. Can we provide a
representation of this semi-group?

Recall that, from our de�nition of the labeled transition probabilities, T ( � )
ij = � ij . Thus, T ( � ) is an

identit y element. This suggestsusing the labeled transition matrices to form a matrix representation of the
semi-group. Accordingly, �rst de�ne U (s)

ij by setting U (s)
ij = 0 when T (s)

ij = 0 and U (s)
ij = 1 otherwise, to
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remove probabilities. Then de�ne the set of matrices U = f T ( � ) g
S

f U (s) ; s 2 Ag. Finally, de�ne G as the
set of all matrices generatedfrom the set U by recursive multiplication. That is, an element g of G is

g(ab::: cd) = U (d) U (c) : : : U (b) U (a) ; (B.1)

wherea; b;: : : c;d 2 A. Clearly, G constitutes a semi-groupunder matrix multiplication. Moreover, g(a::: bc) =
0 (the all-zero matrix) if and only if, having emitted the symbols a : : : b in order, we must arrive in a state
from which it is impossible to emit the symbol c. That is, the zero-matrix 0 is generated if and only if
the concatenation of c onto a : : : b is forbidden. The element ; is thus the all-zero matrix 0, which clearly
satis�es the necessaryconstraints. This completesthe proof of Proposition 9.

We call the matrix representation | Eq. B.1 taken over all words in A k | of G the semi-group machine
of the � -machine f S; T g (Young 1991).

B.3 Measure-Theoretic Treatmen t of Causal States

In Section 4.2, where we de�ne causal states, � -machines, and their basic properties, we use a great many
conditional probabilities. However, there are times when the events on which we condition | particular
histories, or particular e�ectiv e states | have probabilit y zero. Then classical formul� for conditional
probabilit y do not apply, and a more careful and technical treatment, going back to the measure-theoretic
basis of probabilit y, is called for. That's what I do here, showing that all the conceptswe saw in Section
4.2 | the causal states, their morphs, and so forth | are well-de�ned measure-theoretically. The proofs
in that section are equally valid whether we interpret the conditional probabilities they invoke classically
or measure-theoretically. (The measure-theoreticinterpretation raises a few technicalities, which we have

agged with footnotes to those proofs.) And we show here that our methods of proof in subsequent sections
are not a�ected by this changein interpretation.

In what follows, I draw on Billingsley (1965, Billingsley (1979), Doob (1953), Gray (1990), Lo�eve (1955),
and Rao (1993). I assumethat the reader is familiar with measure-theoreticprobabilit y, at least in some
basic way. The notation broadly follows that of Billingsley. A slightly di�eren t approach to these issues,
and more than slightly di�eren t terminology and notation, may be found in chapter 2 of Upper (1997).

B.3.1 Abstract De�nition of Conditional Probabilit y

De�nition 68 (Conditional Probabilit y) Consider a probability space (
 ; F ; P) and a � -subalgebra G �
F . The conditional probabilit y of an event A 2 F , given the family of events G, is a real-valued random
function PA jjG (! ), with the following properties:

1. PA jjG (! ) is measurable with respect to G; and

2. for any G 2 G,
Z

G
PA jjG (! )dP = P(A \ G) (B.2)

The latter condition generalizesthe classicalformula that P(A \ G) =
P

g2 G P(Ajg)P(g).

Prop osition 7 There alwaysexists a function PA jjG (! ) satisfying the just-given conditions. Moreover, if f
and g are two functions which both satisfy the above requirements, f (! ) = g(! ) for P-almost-all ! .

Proof: The existenceof such random variables is vouchsafedto us by the Radon-Nikodym theorem; PA jjG (! )
is the Radon-Nikodym derivative of P(A \ G), which is a measureover G, with respect to P. (The latter
is also restricted to the � -subalgebraG.) The Radon-Nikodym theorem also tells us that any two functions
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which satisfy the two conditions above agreefor P-almost-all points ! . Any such function is called a version
of the conditional probabilit y. (Seeany of the standard referencescited above for further details.)

If G = � (X ), the � -algebra generated by the random variable X , then we may write PA jj X = x (! ) or
PA jj X (! ) in place of PA jjG (! ).

It is not always the casethat, if we let A vary, while holding ! �xed, we get a proper probabilit y measure.
Indeed, there are pathological exampleswhere there are no conditional probabilit y measures,though there
are conditional probabilit y functions. A conditional probabilit y function which is a measurefor all ! is said
to be regular. If a regular conditional probabilit y usesas its conditioning � -algebra that generated by a
random variable X , we write P(�jX = x), as usual.

B.3.1.1 Conditional Exp ectation

As well as conditional probabilities, we shall need conditional expectations. Their de�nition is completely
analogousto De�nition 68. The expectation of the random variable X conditional on the � -subalgebraG,
denoted E f X jjGg is an integrable, G-measurablerandom variable such that

R
G E f X jjGgdP =

R
G X dP for

all G 2 G. Conditional probabilities are, of course,the conditional expectations of indicator functions. There
is another important relationship betweenconditional probabilit y and conditional expectation, which we give
in the form of another proposition.

Prop osition 8 (Coarsening Conditional Probabilit y) (Bil lingsley 1979; Doob 1953; Lo�eve1955; Rao
1993) Consider any two � -subalgebras G and H, with G � H . Then

PA jjG (! ) = E
�

PA jjH jjG
	

(! ) almost surely (a:s:); (B.3)

where we havebeen explicit about the conditional expectation's dependence on ! .

B.3.1.2 Conditional Indep endence

Let G be the conditioning � -subalgebra,and let A and B be two other � -subalgebras. Then A and B are
conditional ly independent, given G, just when, for any pair of events A; B , A 2 A and B 2 B, PAB jjG (! ) =
PA jjG (! )PB jjG (! ) a.s.

Take any two � -algebrasover the sameset, A and B; their product, AB , is the � -algebra generatedby
the setsof the form a \ b, where a 2 A and b 2 B.

Prop osition 9 (Rao 1993, sec. 2.5) A and B are conditional ly independent given G i�, for all B 2 B,
PB jjA G (! ) = PB jjG (! ) a.e., where AG is de�ned as above. This is also true if A and B are interchanged.

Remark. Assuming regularity of conditional probabilit y, this is equivalent to saying that the random
variables Y and Z are independent given X if and only if

P(Z 2 AjX = x; Y = y) = P(Z 2 AjX = x) (B.4)

Prop osition 10 (Lo�eve1955, p. 351) Assuming regularity of conditional probability, for any three random
variables

P(Z 2 A; Y = yjX = x)

= P(Z 2 AjY = y; X = x)P(Y = yjX = x) (B.5)

Lemma 38 Let A = � (X ), and B = � (f (X )) , for a measurable, nonrandom function f . Then AB =
� (X ; f (X )) = A = � (X ).

Proof. Since f is measurable,every element of B is an element of A , though not necessarilythe reverse.
SinceA is a � -algebra, it is closedunder intersection. Therefore AB � A . But for every a 2 A, we can �nd
a b 2 B such that a � b, and a \ b = a. Thus A � AB . HenceA = AB . QED.
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Lemma 39 Let f be a measurable, nonrandom function of the random variable X . Then

PA jj X ;f (X ) (! ) = PA jj X (! ) a:e: ; (B.6)

Proof. By Lemma 38, the conditioning � -algebrason the left and right hand sidesare the same. QED.

B.3.2 Restatemen ts and Pro ofs of the Main Results

Webeginby restating the de�nition of causalequivalence,and soof causalstates,in terms adaptedto abstract
conditional probabilities. We then go through the results of Section 4.2 in order and, where necessary, give
alternate proofs of them. (Where new proofs are not needed,we say so.)

B.3.2.1 De�nition of Causal States

For us, 
 is the spaceof two-sided in�nite strings over A ; F is the � -algebra generatedby cylinders over
such strings; and the probabilit y measureP is simply P (De�nition 9).

What we want to do is condition on histories; so we make our conditioning � -subalgebra� (
 
S), following

the usual convention that � (X ) is the � -algebra induced by the random variable X . This contains all �nite-
length histories, and even all semi-in�nite histories, as events. Similarly, designate the � -subalgebra for

futures by � (
!
S). We want there to be a function P

F jj � (
 
S )

(! ), at least when F 2 � (
!
S); and we want this to

be a probabilit y measureover � (
!
S), for �xed ! .

As we have seen(Proposition 7), the conditional probabilit y function exists. Moreover, it is regular, since

� (
 
S) is a subalgebraof the � -algebra of cylinder sets,and St always takes its valuesfrom a �xed, �nite set

(Doob 1953;Rao 1993).

Thus, we do have a random variable P
F jj

 
S =

 
s

(! ), which is the probabilit y of the set F 2 � (
!
S), given

that
 
S=

 
s . We now de�ne causal equivalencethus:

 
s � �

 
s

0
i�, for P-almost all pairs ! ; ! 0, if ! 2

 
s and

! 0 2
 
s

0
, then P

F jj
 
S =

 
s

(! ) = P
F jj

 
S =

 
s

0(! 0), for all F 2 � (
!
S). (It is clear that this is an equivalencerelation

| in particular, that it is transitiv e.)
It may be comforting to point out (following Upper (1997, sec.2.5)) that the functions P

F jj � (
 
S

L
)
(! ),

i.e., the probabilities of the �xed future event F conditional on longer and longer histories, almost always
converge on P

F jj � (
 
S )

(! ). This is becauseof the martingale convergencetheorem of Doob (Doob 1953,

Theorem VI I.4.3). For each L , � (
 
S

L
) � � (

 
S

L +1
) and the smallest � -algebra containing them all is � (

 
S).

Thus, for any random variable X with E f jX jg < 1 , lim L !1 E
�

X jj � (
 
S

L
)
�

= E
n

X jj � (
 
S)

o
almost surely.

Applied to the indicator function 1F of the future event F , this givesthe desiredconvergence.
Note that if we want only causalequivalencefor a �nite future, matters are even simpler. Sincefor �nite

L every event in � (
!
S

L
) consistsof the union of a �nite number of disjoint elementary events (i.e., of a �nite

number of length-L futures), it su�ces if the conditional probabilit y assignments agree for the individual
futures. If they agreefor every �nite L , then we have the alternate de�nition (Eq. 4.11) of causalstates.

B.3.2.2 Measurabilit y of �

At several points, we need � to be a measurablefunction, i.e., we need � (S) � � (
 
S). This is certainly the

casefor processesthat can be represented as Markov chains, stochastic deterministic �nite automata, or
conventional hidden Markov models generally. The strongest general result yet obtained is that � is, so to
speak, nearly measurable.
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Prop osition 11 (Upper 1997, Prop. 2.5.3) For each causal state Si , the set � � 1(Si ) of histories mapping
to Si is either measurable or the intersection of a measurable set and a set of ful l measure.

Thus, each � � 1(Si ) di�ers from a measurableset in � (
 
S) by at most a subset of a set of measurezero.

This is closeenough to complete measurability for our purposes,and we will speak of � as though it were
always measurable. Finding necessaryand su�cien t conditions on the processfor � to be measurableis an
interesting problem.

B.3.2.3 The Morph

We wish to show that the morph of a causal state is well-de�ned, i.e., that the distribution of futures
conditional on the entire history is the sameas the distribution conditional on the causalstate. Start with

the fact that, sinceS = � (
 
S), and � is nearly measurable,� (S) � � (

 
S). This lets us useProposition 8, and

seethat PF jjS = Si (! ) is the expectation of P
F jj

 
S =

 
s

(! ) over those ! 2 Si . But, by the construction of causal

states, P
F jj

 
S =

 
s

(! ) has the samevalue for P-almost-all ! . Thus P(F jS = Si ) = P(F j
 
S=

 
s ) for (almost

every)
 
s 2 Si . (We can always �nd versionsof the conditional probabilities which eliminate the \almost-all"

and the \almost every" above.) So, since this works for arbitrary future events F , it works in general,and
we may say that the distribution of futures is the samewhether we condition on the past or on the causal
state.

B.3.2.4 Existence of the Conditional En trop y of Futures

As we have seen,P !
S

L
jj

 
S

(! ) is a probabilit y measureover a �nite set, so (Gray 1990,sec.5.5) we de�ne the

entropy of length-L futures conditional on a particular history
 
s as

H [
!
S

L
j

 
S=

 
s ] (B.7)

� �
X

f sL g

P(
!
S

L
= sL j

 
S=

 
s ) log2 P(

!
S

L
= sL j

 
S=

 
s ) ;

with the understandingthat weomit futures of conditional probabilit y zerofrom the sum. This is measurable,

sinceP(
!
S

L
= sL j

 
S=

 
s ) is � (

 
S)-measurablefor each sL . Now set

H [
!
S

L
j

 
S] �

Z
H [

!
S

L
j

 
S=

 
s ]dP  

S
; (B.8)

where P  
S

is the restriction of P to � (
 
S). (Measurabilit y tells us that the integral exists.)

The procedurefor H [
!
S

L
jR ] is similar, but if anything even lessproblematic.

Note that we do not need to re-do the derivations of Sections4.3 and 4.4, since those simply exploit
standard inequalities of information theory, which certainly apply to the conditional entropies we have just
de�ned. (Cf. (Billingsley 1965;Gray 1990).)

B.3.2.5 The Lab eled Transition Probabilities

Recall that we de�ned the labeled transition probabilit y T (s)
ij as the probabilit y of the joint event S0 = Sj

and
!
S

1
= s, conditional on S = Si . Clearly (Proposition 7), the existenceof such conditional probabilities

is not at issue,nor, as we have seen,is their regularity. We can thus leave De�nition 14 alone.
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B.4 Alternate Pro of of the Re�nemen t Lemma (Lemma 12)

The proof of Lemma 12 carries through verbally, but we do not wish to leave loop-holes. Unfortunately , this
meansintro ducing two new bits of mathematics.

First of all, we needthe largest classesthat are strictly homogeneous(De�nition 6) with respect to
!
S

L

for �xed L ; theseare, so to speak, truncations of the causalstates. Accordingly, we will talk about SL and
� L , which are analogousto S and � . We will also needto de�ne the function � L

� � � P(SL = � L jR = � ).
Putting thesetogether, for every L we have

H [
!
S

L
jR = � ] = H [

X

f � L g

� L
� � P(

!
S

L
jSL = � L )] (B.9)

�
X

f � L g

� L
� � H [

!
S

L
jSL = � L ] : (B.10)

Thus,

H [
!
S

L
j R ] =

X

f � g

P(R = � )H [
!
S

L
jR = � ] (B.11)

�
X

f � g

P(R = � )
X

f � L g

� L
� � H [

!
S

L
jSL = � L ] (B.12)

=
X

f � L ;� g

P(R = � )� L
� � H [

!
S

L
jSL = � L ] (B.13)

=
X

f � L ;� g

P(SL = � L ; R = � )H [
!
S

L
jSL = � L ] (B.14)

=
X

f � L g

P(SL = � L )H [
!
S jSL = � L ] (B.15)

= H [
!
S

L
jSL ] : (B.16)

That is to say,

H [
!
S

L
jR ] � H [

!
S

L
jSL ] ; (B.17)

with equality if and only if every � L
� � is either 0 or 1. Thus, if H [

!
S

L
j bR] = H [

!
S jSL ], every b� is entirely

contained within some� L ; except for possiblesubsetsof measure0. But if this is true for every L | which,
in the caseof a prescient rival bR, it is | then every b� is at least weakly homogeneous(De�nition 7) with

respect to all
!
S

L
. Thus, by Lemma 7, all its members, except for that samesubsetof measure0, belong to

the samecausalstate. QED.

B.5 Finite Entrop y for the Semi-In�nite Future

While caseswhere H [
!
S] is �nite | more exactly, where lim L !1 H [

!
S

L
] exists and is �nite | may be

uninteresting for information-theorists, they are of great interest to physicists, sincethey correspond, among
other things, to periodic and limit-cycle behaviors. There are, however, only two substantial di�erences
betweenwhat is true of the in�nite-en tropy processesconsideredin the main body of the development and
the �nite-en tropy case.
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First, we can simply replacestatements of the form \for all L , H [
!
S

L
] : : : " with H [

!
S]. For example, the

optimal prediction theorem (Theorem 5) for �nite-en tropy processesbecomesfor all R , H [
!
S jR ] � H [

!
S jS].

The details of the proofs are, however, entirely analogous.
Second,we can prove a substantially stronger version of the Control Theorem (Theorem 11).

Theorem 25 (The Finite-Con trol Theorem) For all prescient rivals bR ,

H [
!
S] � H [

!
S j bR] � C� : (B.18)

Proof. By a direct application of Eq. A.20 and the de�nition of mutual information, Eq. A.10, we have
that

H [
!
S] � H [

!
S jS] � H [S] : (B.19)

But, by the de�nition of prescient rivals (De�nition 17), H [
!
S jS] = H [

!
S j bR], and, by de�nition, C� = H [S].

Substituting equalsfor equalsgivesus the theorem. QED.
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App endix C

Pro of of Lemma 20, Chapter 9

Recall the statement of Lemma 20
If a domain � i has a periodic phase,then the domain is periodic, and the spatial periodicities S(� i

j ) of
all its phases� i

j ; j = 0; : : : ; p � 1; are equal.
Proof. The proof consists of two parts. First, and most importantly , it is proved that the spatial

periodicities of the temporal phasesof a periodic domain � i cannot increaseand that the periodicit y of
one phase implies the periodicit y of all its successors.Then it follows straightforwardly that the spatial
periodicities have to be equal for all temporal phasesand that they all must be periodic.

Our proof employs the update transducer T� , which is simply the FST which scansacross a lattice
con�guration and outputs the e�ect of applying the CA update rule � to it. For reasonsof space,we refrain
from giving full details on this operator | seerather (Hanson 1993). Here we need the following results.
If � is a binary, radius-r CA, the update transducer has 22r states, representing the 22r distinct contexts
(words of previously read symbols) in which T� scansnew sites,and we customarily label the statesby these
context words. The e�ect of applying the CA � to a set of lattice con�guration represented by the DFA M
is a new machine, given by T� M | the \direct product" of the machinesM and T� . Onceagain, for reasons
of space,we will not explain how this direct product works in the generalcase.We are interested merely in
the special casewhere M = � i

j , the j th , periodic phaseof a domain, with spatial period n. The next phase
of the domain, � i

j +1 , is the composedautomaton T� M , once the latter hasbeen minimized. Before the latter
step T� M consistsof n \copies" of the FST T� , onefor each of � i

j 's n states. There are no transitions within
a copy. Transitions from copy k to copy k0 occur only if k0 = k + 1 (mod n). In total, there are n22r states
in the direct composition.

T� M is �nite and deterministic, but far from minimal. We are interested in its minimal equivalent
machine, sincethat is what we have de�ned as the representativ e of the next phaseof the domain. The key
to our proof is an unproblematic part of the minimization, namely, removing statesthat have no predecessors
(i.e., no incoming transitions) and so are never reached. (Recall that, by hypothesis, we are examining
successive phasesof a domain, all represented by strongly connected processgraphs.) It can be shown,
using the techniques in Hanson (1993), that if the transition from state k in � i

j to state k + 1 occurs on a
0 (respectively, on a 1), then in the composedmachine, the transitions from copy k of T� only go to those
states in copy k + 1 whosecontext string endsin a 0 (respectively, in a 1). Sincestates in copy k + 1 can be
reached only from states in copy k, it follows that half of the states in each copy cannot be reached at all,
and so they can be eliminated without loss.

Now, this procedureof eliminating states without direct predecessorsin turn leavessomestates in copy
k + 2 without predecessors.So we can re-apply the procedure, and once again, it will remove half of the
remaining states. This is becauseapplying it twice is the sameas removing those states in copy k + 2 for
which the last two symbols in the context word di�er from the symbols connectingstate k to state k + 1 and
state k + 1 to state k + 2 in the original domain machine � i

j .
What this proceduredoesis exploit the fact that, in a domain, every state is encountered only in a unique
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update-scanningcontext; we are eliminating combinations of domain-state and update-transducer-statethat
simply cannot be reached. Observe that we can apply this procedureexactly 2r times, sincethat su�ces to
establish the completescanningcontext, and each time we do so, we eliminate half the remaining states. We
are left then with n22r =22r = n states after this processof successive halvings. Further observe that, since
each state k of the original domain machine � i

j occurs in some scanningcontext, we will never eliminate all
the states in copy k. Sinceeach of the n copieshas at least one state left in it, and there are only n states
remaining after the halvings are done, it follows that each copy contains exactly one state, which has one
incoming transition, from the previous copy, and one outgoing transition, to the next copy. The result of
eliminating unreachable states, therefore, is a machine of n states which is not just deterministic but (as we
have de�ned the term) periodic. Note, however, that this is not necessarily the minimal machine, sincewe
have not gone through a complete minimization procedure, merely the easypart of one. � i

j +1 thus might
have fewer than n states, but certainly no more.

To sum up: We have establishedthat, if � i
j is a periodic domain phase,then � i

j +1 is also periodic and
S(� i

j +1 ) � S(� i
j ). Thus, for any t, S(� t � i

j ) � S(� i
j ). But � t � i

j ) = � i
( j + t ) mo dp and if t = p, we have

� i
( j + t ) mo dp = � i

( j + p) mo dp = � i
j . Putting thesetogether we have

S(� i
j +1 ) � S(� i

j ) ) S(� i
j +1 ) = S(� i

j ) ; (C.1)

for j = 0; 1; : : : ; p � 1. This implies that the spatial period is the same, namely n, for all phasesof the
domain. And this provesthe proposition when the CA alphabet is binary.

The reader may easily check that a completely parallel argument holds if the CA alphabet is not binary
but m� ary, substituting m for 2 and (m � 1)=m for 1=2 in the appropriate places. QED.
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App endix D

Prescience, Su�ciency , and Optimal
Prediction

D.1 More General Notions of Predictiv e Power

In the precedingargument, we measuredthe predictive power of a classof e�ectiv e statesby how much they
reducedthe entropy of the outputs. Thinking of entropy ase�ectiv e variabilit y or uncertainty, this is not an
unreasonablemeasureof abilit y to predict, but in many applications it is customary and/or sensibleto use
other measures,and, in any case,it would be naturally to be a little leery of the causal states if they were
optimal only as measuredby conditional entropy. It is for this reasonthat we have paid such attention to
the statistical concept of su�ciency , since it lets us establish the predictive optimalit y of the causal states
in a much more generalsense.

Before we can do that, we need to intro duce someconcepts from statistical decision theory (Blackwell
and Girshick 1954;Luce and Rai�a 1957;Lehmann and Casella1998).

D.2 Decision Problems and Optimal Strategies

De�nition 69 (A Decision Problem) A decision problemconsistsof the pair 
 ; A , where 
 is a random
variable (ranging over 
 ) and A is someset. 
 is called the sample or state of nature, and is supposed to
representdata, observations,experimental results, etc. An a 2 A is called an action, and the elementsof A
are supposed to represent di�er ent possibleresponsesto the information about the world represented in 
 .

De�nition 70 (A Pure Strategy) A pure strategy is a function specifying a unique action for each state
of nature, f : 
 7! A . If f (! 1) = f (! 2) whenever! 1 and ! 2 are in the samecell of a partition Z , we say
that the f dependson the corresponding random variable Z .

De�nition 71 (A Randomized Strategy) A randomized strategy � is a random function from states
of nature to actions. We write the probability of taking action a given sample ! , under strategy � , as
P� (A = aj
 = ! ). If P� (A = aj
 = ! 1) = P� (A = aj
 = ! 2), for all a, whenever! 1 and ! 2 are in the
samecell of the partition Z , we say that � depends on the corresponding random variable Z .

Given a set of randomizedstrategies,we can construct a set of pure strategiessuch that each randomized
strategy picks a pure strategy at random. Hencethe name \pure strategy".

De�nition 72 (Utilit y of a Strategy) The utilit y of a strategy � , is a functional from � 's conditional
distribution of actions to the non-negative real numbers, parameterized by the state of nature: L (�; ! ). It is
often by not necessarily written in terms of a lossfunction de�ned for each action, L : A � 
 7! R + .
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Remark 1. Perhapsthe two most common utilit y functionals are mean lossand maximum loss. Remark
2. Someauthors prefer to make large values of utilit y preferable to small ones; no matter of principle is
involved.

De�nition 73 (Dominance among Strategies) Strategy � dominates  whenL(�; ! ) � L ( ; ! ), for all
! 2 
 .

De�nition 74 (Optimal Strategies) If a strategy � dominates all other strategies  , then � is called an
optimal strategy.

Remark. If the utilit y functional is the meanloss,then the optimal strategy is said to be a Bayesstrategy,
or a Bayesoptimal strategy, or simply to maximize expectedutilit y. If the utilit y functional is the maximum
loss, then the optimal strategy is said to be minimax.

De�nition 75 (Beha viorally Equiv alen t Strategies) Two randomized strategies� 1; � 2 are behaviorally
equivalent if and only if they lead to the samedistribution of actions conditional on the state of nature, i.e.,
i� P� 1 (A = aj
 = ! ) = P� 2 (A = aj
 = ! ) for all a; ! .

De�nition 76 (Beha viorally Equiv alen t Strategy Sets) Two sets � 1; � 2 is randomized strategies are
behaviorally equivalent i� each strategy in � 1 is behaviorally equivalent to at least one strategy in � 2, and
vice versa.

Remark. This is the sameas the de�nition of \equally informativ e" strategiesand statistics in Blackwell
and Girshick (1954, Def. 8.3.1). We avoid the useof the word \informativ e" here, sincewe do not want to
have to explain the relationship betweenthis concept and those of information theory.

Prop osition 12 (Strategies Based on Su�cien t Statistics) Given a set � of randomized strategies
which are functions of the state of nature, and a su�cient statistic Z on 
 , there is a behaviorally equivalent
set of randomized strategies 	 , where each  2 	 dependsonly on Z . Conversely,if Z is a statistic, and for
any arbitrary set of randomized strategies � depending on 
 it is possibleconstruct a set 	 of randomized
strategies depending only on Z which is behaviorally equivalent to � , then Z is a su�cient statistic.

This is proved by Blackwell and Girshick (1954) as their Theorem 8.3.2. Their proof is constructive. (See
their p. 218 for the conversepart of the theorem.) Seealso Lehmann and Casella(1998, ch. 1).

Remark. The gist of the lemma is that, whatever behavior you might want to get from strategieswhich
are sensitive to the whole of the state of nature, or to somearbitrary partition over it, you can get the same
behavior using strategieswhich are sensitive only to a su�cien t statistic.

D.3 Prediction Problems and Optimal Prediction

De�nition 77 (A Prediction Problem) Let A be the set of future behaviors of which the systemis ca-
pable. Then a strategy is a (possibly random) mapping from present data to future events, i.e., a prediction
method. Let 
 be the space of possibleobservations-to-date,and suppose that there is an optimal predic-
tion method, � opt which is a (possibly random) function of 
 . Then we say that the decision problem is a
prediction problem.

Remark. The essential parts of the de�nition are that (1) the \state of nature" is a record of past
observations | in the caseof memorylesstransduction, the current input to the transducer | and (2) there
is an optimal predictor basedon that data.

Lemma 40 (General Predictiv e Optimalit y of Prescien t States) Let � opt be the optimal predictor
for a given prediction problem, and let bR be a class of prescient states for that process. Then there is a
behaviorally equivalent, and so equally optimal, predictor,  '

( , which depends only on bR.
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Proof. We simply apply Proposition 12 with � = f � opt g.

Lemma 41 (Generally Predictiv ely Optimal States Are Prescien t) If, for any prediction problem
on P, one can construct an optimal predictor which depends only on R, then R is prescient.

Proof. We simply consider the prediction problem implicit in the preceding development, the optimal
(minimal-conditional-entropy) solutions to which all, by construction, involveprescient states. By hypothesis,
we can make an optimal predictor, in this sense,using R , so R must be prescient.

Theorem 26 (Gener al Pr edictive Optimality and Minimality of Causal States) The causal states
are generally predictively optimal, and if R is generally predictively optimal, then it is a re�nement almost
everywhere of S.

Proof. The �rst part of the theorem, the predictiveoptimalit y of the causalstates, is a direct application of
Lemma40, sincethe causalstatesareprescient. Second,weknow from Lemma41that generally-predictively-
optimal states are prescient, and from the Re�nement Lemma (12) that prescient states are re�nements a.e.
of the causalstates. Or, put di�eren tly , the generally-predictive statesare su�cien t statistics, and the causal
states are the minimal su�cien t statistics, so the secondpart of the theorem follows from Lemma 3 (in its
various avatars) as well.
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