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Abstract

All self-resgecting nonlinear sciertists know self-organizationwhen they seeit: exceptwhen we disagree.
For this reason,if no other, it is important to put somemathematical spineinto our oppy intuitiv e notion
of self-organization. Only a few measuresof self-organization have been proposed;none can be adopted in
good intellectual conscience.

To nd adecen formalization of self-organization, we needto pin down what we mean by organization.
The best answer is that the organization of a processis its causal architecture | its internal, possibly
hidden, causal states and their interconnections. Computational mechanicsis a method for inferring causal
architecture | represened by a mathematical object called the -machine| from obsened behavior. The

-machine capturesall patterns in the processwhich have any predictive power, socomputational medanics
is alsoa method for pattern discovery. In this work, | develop computational medanicsfor four increasingly
sophisticatedtypesof process] memorylesstransducers,time series,transducerswith memory, and cellular
automata. In ead casel provethe optimalit y and uniquenessof the -machine's represertation of the causal
architecture, and give reliable algorithms for pattern discovery.

The -machine is the organization of the process,or at least of the part of it which is relevant to our
measuremets. It leadsto a natural measureof the statistical complexity of processespamely the amount
of information neededto specify the state of the -machine. Self-organizationis a self-generatedincrease
in statistical complexity. This ful lls various huncheswhich have beenadvancedin the literature, seemsto
accord with people'sintuitions, and is both mathematically preciseand operational.
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Chapter 1

Intro duction

This is a book about causal architecture, pattern discovery, complexity and self-organization. Those are
vague, even grandiosethemes. You may well doubt that | have anything worthwhile to say about any of
them, let aloneall of them; if | found a book with this title (by someoneelse!),l'd be skeptical myself. Still,
by the end | hope to have corvinced you that there is an optimal method for discovering causalpatterns in
data, that it givesus a natural and satisfying measureof complexity, and that it at least might give us an
operational test for self-organization.

Let metry to unpack that alittle. The problem of trying to determine causalrelations from obsenationsis
very anciert, asare objections that no such thing is possiblé'. Similarly anciert is the problem of discovering
patterns in the natural world, and of doing so reliably, without fooling ourselves. Even the notion of self-
organization (though not that name) is very old, being clearly articulated by Descartesat the beginning of
the sciertic revolution. And similarly for complexity. All of theseproblems can be, and often are, phrased
in vague, suggestive ways which hint at connectionsto eat other. But phrased that way, they hint at
connectionsto everything under the sun, and much elsebeyond. What | intend to do hereis show that the
notion of causalarchitecture can be made precise;that the inference of causalarchitecture is a special case
of pattern discovery, which is also precise; and that a particular method of discovering causal patterns is
optimal. The rest will follow more or lessnaturally from this.

But rst | should say a little bit about self-organization, and why it's worth explicating.

1.1 Self-Organization

Seta child alonewith a heap of Legos,and in an hour the Legosare probably a lot more ordered than they
were at the start. Their organization has increased,but in a pretty unmysterious and, to us, uninteresting
way: the kid organizedthem. On the other hand, there are somethings which will organize without this
kind of outside intervertion, which self-organize.(Compare Figure 1.1 with Figure 1.2.)

There is along tradition of interest in self-organizingprocessegseeSection 1.5 below); in recert decades,
as the poet (Sterling 1985) says, \the march of sciencebecamea headlong stampede." This has obscured
the fact that we do not have anything like a theory of self-organization, not even an unambiguous test for
it. The point of this book is not to provide a full- edged theory of self-organization but, more modestly, to
formalize the conceptin a way which leadsto practical tests.

Currently, the state of the art for testing whether or not a processis self-organizingboils down to \I know
it when| seeit." This may be acceptableto artists and SupremeCourt Justices, but it cannot satisfy those
who fondly imagine their trades to be exact sciences. Moreover, there are likely to be many caseswhere
my intuition conicts with yours; this is notoriously the casewith art, despite the fact that Homo sapiens

1For some of the earliest history of the problem of causation, see Kogan (1985) and his sources, ibn Rushd (Av erroes)
(1180{1185/1954) and al Ghazali (1100/1997).



Figure 1.1: Pattern formed by diusion-limited aggregation (Vicsek 1989; Barabasi and Stanley 1995;
D'Souzaand Margolus 1999). At ead time-step, particles (pale dots) perform independert random walks; if
one of them hits the aggregate(dark mass),it stops moving and joins the aggregate. This image (made on
a CAM 8 computer) shows a pattern formed on a 1024 1024grid, starting with a single aggregateparticle
at the certer and an initial density of free particles of 0:20, after about 1:7 10* time-steps. This cellular
automaton (Chapter 8) models many natural self-organizingprocessegBall 1999, ch. 5).



Figure 1.2: Detail from Japanesemaple leavesstitched togetherto make a a o ating chain; the next day it
became a hole; supported underneath by a wovenbriar ring, by Andy Goldsworthy (1990).

has beenexposedto it sincethe Old Stone Age?. Given that self-organizationis a recert concept, and one
whosecareful use hasn't beenunder a lot of cultural selection pressure,what's surprising is not that there
are controversiesover whether, e.g., turbulent o ws or ecologicalsuccessionsre self-organizing,but that we
have any agreemen at all about what self-organizes.

1.2 Formalizing an Intuitiv e Notion

Most of our notions are intuitiv e, unformalized, and vague. This suits us well enough, most of the time,
and arguably some degreeof vaguenesss inevitable. Still, from time to time we want to make a notion
lessvague, lessintuitiv e and more explicit, more amenableto examination and reasoning| to formalize it.
That's the casehere: we want to make \self-organizing" a formal concept and no longer just an intuitiv e
one. In essencewe want a de nition, \x is self-organizingi x is :::," followed by a list of individually
necessaryand jointly su cien t conditions.

Now, it's not asthough \self-organizing" has someinner essencavhich such a de nition tries to capture.
(If it did, we'd be in lessneed of formalization!) Rather, the goal is to replace a squisty notion with a
more rigid one which can do the samework, and more besides. As the usual authorities in the matter of
formalizing intuitions (Quine 1961)insist, the goalis that the formal notion match the intuitiv e onein all the
easycases;resolve the hard onesin ways which don't make us boggle; and let us frame simple and fruitful
generalizations. This is of a piecewith the art of de nition in mathematics generally, nicely put by Spivak
(1965, p. 104):

Stokes' theorem sharesthree important attributes with many fully evolved theorems:

2As the poet (Kipling 1940) warns us, \But the Devil whoops, as he whooped of old: “It's clever, but is it Art?" Of course,
we want things which aren't clever, or art ::: .



1. It is trivial.
2. It is trivial becausethe terms appearing in it have beenproperly de ned.
3. It hassigni cant consequences.

Well, not quite all of a piece: we want a conceptwhich appliesto real physical systems,too, sowe want
to be able to decide whether it applies using just experimental data, or, in a pinch, models not too far
abstracted from data. And the simple, fruitful generalizationswill have to wait for someoneelse,or at least
someother book.

1.3 The Strategy

The notion of self-organization does not yield to frontal assault. We need (as it were) to tunnel under its
walls of confusionand then take it from within; and to do that, we needtunnels, and tunneling machinery.
Less metaphorically, | plan to convince you that we should represen the causal architecture of processes
using one particular kind of mathematical object. | will also corvince you that these represerations can
be discovered from data | that the pattern discovery problem is soluble. I am going to do this four times
over, for four di erent and increasingly sophisticated kinds of processesmemorylesstransducers,time series,
transducerswith memory, and cellular automata.

Having reducedyou to a suggestiblestate by proving optimalit y theorems, it will be fairly easyto corvince
you that the causalarchitecture of a processis its organization. And then the trick will be turned, because
there is a natural quantitativ e measureof the complexity of the causalarchitecture, i.e., of the organization
of the process.

A word about the math. | aim at a moderate degreeof rigor throughout | but astwo wise men have
remarked, \One man's rigor is another man's mortis" (Bohren and Albrecht 1998). My ideal has beento
keepto about the level of rigor of Shannon (1948)2. In someplaces(like Appendix B.3), I'm closerto the
onset of mortis. No result on which anything elsedependsshould have an invalid proof. There are places,
naturally, wherel am not eventrying to be rigorous, but merely plausible, or even \ph ysical," but it should
be clear from context where those are.

1.4 A Summary

The outline of the book is as follows.

This chapter closeswith a section sketching, very briey, the histories of the idea of self-organization,
of methods of pattern discovery, and of computational mecanics. Chapter 2 discussesprevious proposals
for how to measureorganization, which leadsto a more general discussionof how to measurecomplexity
and how to de ne and describe patterns. | concludethat chapter by rejecting all but one of the previous
proposals for quantifying self-organization, and giving a list of desideratathat any approach to patterns
should fulll. Readerswho wish to go straight to the sciencemay skip both Section 1.5 and Chapter 2,
except for Section2.3.5.

The rest of the book dewelopsthe only approac to patterns | know of which meets all those require-
ments, namely the method of computational mechanics developed by Jim Crutch eld and his minions, one
of which | have the honor to be. Chapter 3 builds up computational mechanicsin the simplest setting, that
of causalrelationships which depend only on the presert value of measuredvariables, or memorylesstrans-
duction (Shalizi and Crutch eld 2000b). This is where | intro duce one of the key conceptsof computational
medhanics, that of causal states(rst de ned by Crutch eld and Young (1989)), and show that they are the
unique, optimal, minimal predictors of the transduction process.

30f course, a mathematician might say that that's not rigorous at all, but this is supposedto be physics, and | would be
extremely happy if annoyance at my style led people to re-do this work with all the bells, -algebras, whistles, categories and
gongs.



Chapter 4 extendsthe approad to the more sophisticated setting of time seriesand (classical) stochastic
processesHere | introducethe other key concept of computational medanics, that of the -machine, which
shows the structure of connectionsover time between causal states. Using the -machine, we seethat the
causalstates always form a Markov process.This is satisfying ideologically, and has interesting information-
theoretic and ergadic consequencesWhile -machinesthemselvesdate badk to Crutch eld and Young (1989),
the methods of proof and results preseried here follow Crutch eld and Shalizi (1999) and especially Shalizi
and Crutch eld (2001).

The next three chapters build on the computational mecdanics of time series. Chapter 5 describesa new
procedurefor reconstructing the causalstatesand the -machine of atime seriesfrom data, with a number of
advantagesover prior methods (Klinkner and Shalizi 2001). Chapter 6 comparesand contrasts computational
mechanicswith a bunch of other, better-known ways of dealing with time seriesand their complexity (Shalizi
and Crutch eld 2001). Chapter 7 shows how to build -machines for stochastic transducers with memory;,
by treating sud transducersas coupled time-series(Shalizi and Crutch eld 2000a).

Chapter 8 introducescellular automata, rst in a very informal way, then in a more formal way which
makesclear that they are dynamical systems,in two di erent ways, and much like any other bunch of maps,
with all the modern conveniences(attractors, basins of attraction, etc.). Then, in Chapter 9 | discussa
very useful set of tools that developed by Crutch eld and Hanson to deal with the dynamics of spatial
con gurations in CA, using the notion of a \regular language" from computer science. Thesetools let us
decomposeone-dimensionalCA con gurations into extended domains and localized particles. The domains
areregionsof spaceand time which are, in a precisesensedoing next to nothing; the particles are propagating
disturbancesin (or between)the domains. Following Hordijk, Shalizi and Crutch eld (2001), | usethe tools
to prove a limit on how many ways the particles in a given CA can interact, and sincethe particles are what
the CA computeswith, this alsolimits the CA's computational power.

The domain-and-particle tools amount to a kind of purely spatial computational medanics, and they
employ a set of spatial causal states. For technical reasons,spatial computational mecanics only applied
to one-dimensionalcellular automata (or 1+1D, to eld theorists), a restriction known asthe 2D bummer
(Feldman). A fully spatio-temporal computational medanics, like a spatial computational medanics for
higher dimensions, seemedout of reac for the longesttime. (Life would be easierif the universeconsisted
of a single point (Calvino 1965/1968,ch. 4).) Chapter 10 explains what the di culties were, shovs how to
overcomethem soasto de ne local causalstatesfor ead point in space-time,and showvsthat the causalstates
of spatial computational mechanicsare also spatio-temporal causalstates (Shalizi, Haslinger and Crutch eld
2001).

The last chapter summarizes everything that's been done in the book, for the benet of those who
only read introductions and conclusions. | proceedto de ne emergenceand self-organization, following
Crutch eld (1994a, Crutch eld (1994b) with some technical re nements, and an illustrativ e back-of-the-
ervelope calculation. Then | list some unsolved problems and desirable extensions of the mathematical
foundation of computational medhanics. | close by throwing out suggestionsfor things to examine with
thesetools, developed in our group at SFIl, somevague, grandioseideas about learning, and prophecy that
stock-market quants will go the way of Lancashireweavers. Someof this material is frankly speculative, but
| hope by that point you'll be so overwhelmedthat you'll acceptanything | say | that is, that you'll be
swayed by the intrinsic merits of my argumernts.

A couple of appendicesfollow, to remind you about mathematical tools (information theory, conditional
measures,formal languages,etc.) you probably forgot how to use before | was out of diapers, and to hold
more peripheral bits of math which would clog up the main chapters.

The key chapters, which should form a coherent sequenceare 3, 4, 7 and 10. The last two are partially
independert of ead other, but if you're interestedin the spatial-processmaterial in Chapter 10, you should
probably read Chapter 9 as well.



1.5 Historical Sketch

[Consider] what would hapgen in a new world, if God were now to create somewhee in the
imaginary spaces matter su cient to composeone, and were to agitate variously and confusedly
the di er ent parts of this matter, so that there resulted a chaos as disordered as the poets ever
feigned, and after that did nothing more than lend his ordinary concurrence to nature, and allow
her to act in accordance with the laws which He had establishe ::: . | showa& how the greatest
part of the matter of this chaosmust, in accordance with theselaws, disposeand arrangeitself in
sucha way asto presentthe appearance of heavens; how in the meantime someof its parts must
compose an earth and some planets and comets, and others a sun and xed stars. ::: | came
next to speak of the earth in particular, and to showhow ::: the mountains, seas, fountains,
and rivers might naturally be formed in it, and the metals produced in the mines, and the plants
grow in the elds and in geneal, how all the bodies which are commonly denominated mixed or
composite might be geneiated ::: [S]o that evenalthough He had from the beginning given it no
other form than that of chaos, provided only He had establishd certain laws of nature, and had
lent it His concurrence to enableit to act asit is wont to do, it may be believed, without discredit
to the miracle of creation, that, in this way alone, things purely material might, in course of time,
have become such as we observethem at present; and their nature is much more easily conceived
when they are beheld coming in this manner gradually into existene, than when they are only
considered as produced at once in a nished and perfect state.

ReneDescartes(1637, part 5)

This section consistsof a few brief remarks on the inverntion and use of the idea of self-organization, so
readerswho just want to go straight to the sciencecan skip it. If you're of the opposite inclination, and want
more details, there is, alas, no decen history of self-organizationfor me to point youto. In the unlikely evert
that historians of scienceread these pages,| should like to bring this little-needed gap to their attention*.

1.5.1 Origins of the Concept

While the notion of spontaneous, dynamically-produced organization is very old®, it only crystallized into
the term \self-organization" in the yearsafter the SecondWorld War, in circles connectedwith cybernetics
and computing machinery (Yovits and Cameron 1960;Von Foeresterand Zopf Jr 1962). The rst appearance
of the term seemsto be in a 1947 paper by W. RossAshby®.

Remarkably, Ashby gave a pretty clear explanation of what he meart by \organization": to paraphrase,
the organization of a system was the functional dependenceof its future state on its presen state and its
current external inputs, if any. That is, if the state spaceis S and the input spaceis |, the organization
of the systemis the function f : S | 7! S which givesthe new state. Ashby understood a systemto be
self-organizingif it changedits own organization, rather than being rewired by an external agency How is
that possible?

4The historical remarks in Prigogine's popular books (Prigogine 1980; Prigogine and Stegners 1979/1984) are at best badly
informed, at worst tendentious. Krohn, Keppers and Nowotny (1990) is highly unreliable sciertically and historically .

5The rst articulation of the concept | have found is that by Descartes, in the epigraph to this section. (See also Descartes
1664.) It subsequertly played an important, if subterranean, role in Europ ean culture, in naturalistic philosophy (Vartanian
1953), in asscriationist psychology (Hume 1739) and in political and economic lib eralism (Mayr 1986). Before the early modern
period, naturalistic philosophies seemto have relied on \time and chance" explanations of organization, along the lines of the
ancient atomists. But these are matters for another time, and another book.

6Most sourceswhich say anything about the origins of the term, attribute it to Farley and Clark (1954), but this is plainly
wrong | the latter cite Ashby. As to Ashby himself, he was a British psychiatrist who in the 1940s independently arriv ed
at many of the ideas which Norb ert Wiener bundled as \cyb ernetics," and was active in the cybernetics movement after the
war. He is a seriously underappreciated gure in the pre-history of the sciencesof complexity. Not only is there no biography
of him, but he isn't even mentioned in the standard historical reference works, and there's one sertence on him in Heims's
The Cybernetics Group (1991). See, however, Ashby's books (1956, 1960), Wiener (1954), and the obituary notice by Conant
(1974).



Ashby's ingeniousanswer is that it is not. Organization isinvariant. It may be, however, that the function
f is well-approximated by another function g in a certain region of the state spaceand by a di erent function
h in another region. If the dynamics then drive the systemfrom the rst region to the second,we will see
an apparent changein the organization, from g to h, though the true, underlying dynamics remains the
same. (Ashby elaborated on this argumert in his 1962 paper. For suggestive remarks on the importance of
thresholdsin this process,seeAshby (1960).)

At the end of the day, the conceptsof organization and self-organizationwe will emergewith will be quite
similar, verbally, to Ashby's. There are three reasonswhy this book doesn't end right here. The rst is that
Ashby's ideasabout what constitutes self-organizationhave beenpretty thoroughly ignored by everyoneelse
who's usedthe idea. The secondis that they don't go far enough: they don't let us distinguish changesthat
lead to more organization from those which lead to less,or even from those which are neutral with respect
to how organizedthe processlooks. The third is that, while the wordy version of organization, in my sense,
will be very closeto Ashby's, the math will be pretty di erent, much more rigorous, and will resolve the
secondproblem, of distinguishing increasesin organization from simple changes

1.5.2 Uses of the Concept

After its introduction, the main incubators of self-organization were physics, computer science,and the
nebulous, ill-fated enterprise of \systems theory". In the physical sciencest was extensively applied, from
the 1970sonwards, to pattern formation and spontaneous symmetry breaking (Nicolis and Prigogine 1977)
and to cooperative phenomena(Haken 1977). To put it kindly, the real value of these early works was
inspiring the production of theories which actually explain things (Manneville 1990; Cross and Hoherberg
1993;Ball 1999). The work of Eigen and Schuster (1979) and of Winfree (1980) were notable exceptionsto
this rule, sincethey were both early and geruinely explanatory.

Some (Klimon tovich 1990/1991) have claimed that the transition from lamellar to turbulent ow is an
instance of self-organization; others have just as vigorously denied this; there has beenno resolution of the
cortroversy, and no meansof resolving it (Frisch 1995). More recertly, there has beengreat interest in the
idea that somesystemscan self-organizeinto critical states (Bak, Tang and Weisen eld 1987;Jensen1998).
Some people make very grand claims indeed for this idea (Bak 1996); others cortend that it hasn't been
demonstratedto apply to a singlenatural or even experimental system. In any case,the dispute doesnothing
to clarify what \self-organized" means.

Within computer science,the primary applications have beento learning (Selfridge 1959; Yovits and
Cameron 1960), especially unsupervisedlearning (Hinton and Sejnavski 1999) and memory (Kohonen 1984;
Kohonen 2001); to adaptation (Holland 1992;Farmer, Lapedes,Padkard and Wendro 1986);and to \emer-
gent" or distributed computation (Forrest 1990;Resnidk 1994;Crutch eld and Mitc hell 1995). More recerntly,
self-organization has begunto feature in economics(Sdhelling 1978; Krugman 1996; Shalizi 1996b), and in
ecology (Arth ur 1990), complete with the now-expected disputes about whether certain processeqsuch as
the successiorof plant communities) are self-organizing.

In the 1980s,self-organization becameone of the ideas, models and techniques bundled together as the
\sciencesof complexity" (Pagels1988)| for good reason,aswe'll seewhenwe getto the connectionbetween
complexity and organization (Chapter 2). This bundle has beenremarkably good at getting itself adopted
by at least somereseardersin essetially every science,sothe idea of self-organizationis now usedin a huge
range of disciplines (see,e.g., Ortoleva 1994), though often not very well (again see,e.g., Ortoleva 1994).

1.5.3 History of Pattern Discovery and Computational Mec hanics

I'll closethis chapter with a few brief remarks on the histories of pattern discovery and computational
mechanics. For more on these matters, especially on techniques akin to computational medanics, see
Shalizi and Crutch eld (2000c)and Chapter 6 below. It might even be a good ideato read this section after
reading Chapters 2{4.

The ideal of algorithmic pattern discovery | of automatically constructing a model directly from data,
without prior assumptionsasto the form of the model| hasbeenthe goal, sometimesmore or lessobscured,



of much work in computer scienceon unsupervised learning. It was very plainly part of the motivation of
(Hebb 1949) when he founded the eld of unsupervisedlearning. For reasonswhich would take too long to
go into, however, machine learning changed directions, to becomea study of how (in essence}o nd the
best model from within a given, pre-speci ed classof models, rather than building a model from the data.
Tedniques of systemidenti ¢ ation in control theory (Stengel 1994) are similarly limited.

In the 1970s however, statisticians and information theorists (Akaike 1998;Rissanen1978;Rissanen1989)
developed model-selection and model-identi cation techniques which sough to balance accuracy against
complexity, de ning both information-theoretically. Every stochastic model assignsa certain probability
(technically, the likelihood) to a givenbody of data. The classicalstatistical technique of maximum likelihood
(Cramer 1945)is simple to selectthat model from the classof those consideredadmissiblewhich makesthe
data most likely. A fundamental result in information theory says that the optimal (minimal mean) length
for the bit-string encading a given signal is proportional to the negative logarithm of the probability of the
signal. Maximum lik elihood thus correspondsto minimizing the length of the bit string neededto encade the
data. The minimum description-length principle of Jorma Rissanensays to pick the model which minimizes
the sum of this bit string, plus the length of the bit string neededto specify the model from within the class
of admissible models. This not only generalizesmaximum likelihood, it generalizesalgorithmic information
| by letting us use stochastic models, it lets us describe random processvery concisely This was not yet
pattern discovery, however, sincethe model classoften had to be tightly constrained for tractabilit y.

The rst sustainede ort at what we may reasonablecall pattern discovery instead camefrom statistical
physics and nonlinear dynamics. In the early 1980s,dynamicists (Padkard, Crutch eld, Farmer and Shav
1980; Takens1981) developed techniquesfor automatically identifying, up to a di eomorphism, athe attrac-
tor of a smooth dynamical systemfrom a time-seriesof one of its coordinates. Despite occasionalabuses this
method, variously known as\attractor reconstruction," \delay embedding,” \geometry from a time series,"
etc., has becomethe single most valuable tool in experimental dynamics (Kantz and Screiber 1997).

It was on this badkground that, in 1986, Peter Grassberger proposed his \true measure complexity,"
identifying the complexity of a dynamical system with the information neededto specify the state of its
optimal predictor. He did not, however, give any indication of how such a predictor and its states might be
found, nor even what \optimal prediction,” in this sense,might mean. Simultaneously and independertly,
\geometry from a time series"ewlved into \equations of motion from a data series"(Crutch eld and McNa-
mara 1987; Timmer, Rust, Horbelt and Voss2000). In this method, eat small region of the state-spacehad
a vector eld of specied functional form tted to it. The tting was calculated to presene the predictive
information in the data series,as well as satisfying whatever smoothnessconstraints were imposed.

The crucial stepto computational medanicswasto realizethat a\pattern basis" (Crutch eld and Hanson
1993b) could be constructed directly from the data, and that it would give the optimal predictor, aswell as
the equationsof motion. This step wastaken more than a decadeago by Crutch eld and Young (1989), who
intro ducedthe essetial conceptsof time-seriescomputational medanics. Sincethen, their ideashave been
usedto analyze many aspects of dynamical systems, such as intrinsic computation (a concept introduced
by Crutcheld; Crutcheld and Young 1990), multifractal uctuation statistics (Young and Crutch eld
1993), the automatic construction of Markov partitions for so ¢ systems(Perry and Binder 1999), stochastic
resonance(Witt, Neiman and Kurths 1997) and hidden Markov models (Upper 1997). This part of the
theory has been successfullyapplied to real-world data, from the dripping faucet experiment (Goncalves,
Pinto, Sartorelli and de Oliveira 1998), and from atmosphericturbulence (Palmer, Fairall and Brewer 2000).
Feldman and Crutch eld (1998a) extendedthe theory to equilibrium spin systems. Crutch eld and Hanson
(1993b) extendedit to such spatial processess cellular automata. The spatial versionof the theory hasbeen
usedto understand emergernt phenomenain cellular automata (Hanson and Crutch eld 1997) and, perhaps
most importantly, evolved spatial computation (Crutch eld and Mitc hell 1995).



Chapter 2

Measuring Pattern, Complexit y and
Organization

2.1 Organization

Organized matter is ubiquitous in the natural world, and there is even a branch of physics which studiesit:
statistical mechanics. But that eld hasno coheren, principled way of describing, detecting or quantifying
the many di erent kinds of organization found in nature. Statistical medanics has a good measureof one
kind of disorder in thermodynamic entropy, and many people think this will do the job. For instance,
Wolfram (1983) and Klimontovich (1990/1991) are among the handful of physicists who are explicit about
what they mean by \self-organizing," and both identify it with \decreasing entropy”. But thermodynamic
ertropy fails asa measureof organization in many ways. The most basicproblem is that it doesn't distinguish
betweenthe many di erent kinds of organization matter can exhibit. Just in equilibrium, a very partial list
would include:

Dilute homogeneougjases;

Crystals, with many di erent sorts of symmetry;
Quasicrystals;

Low T superconductors;

High T, superconductors;

The long-range order of ferromagnets;

The di erent long-range order of antiferromagnets;

The short-range order and long-range disorder of amorphous solids (Zallen 1983) and spin glasses
(Fischer and Hertz 1988);

The partial positional and orientational orders of the many di erent liquid crystal phases(Collings
1990;de Gennesand Prost 1993);

The very intricate structures formed by amphiphilic moleculesin solution (Gompper and Scick 1994).

Now, statistical mechanics does have a procedure for classifying and quantifying these kinds of order.
It goeslike this (Sethna 1991). A theorist guessesan order parameter, informed by somemixture of what
worked in other problems, experimental ndings, dubious symmetry argumerts and luck. Shethen further
guessesan expansionfor the free energy of the system in powers of this order parameter. Finally, if she
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is very lucky, she not only extracts some quartitativ e predictions from that expansion, but persuadesan
experimertalist to test them, at which point they are most likely found to be wrong, and the whole cycle
starts over. It is a remarkable testimony to the insight, skill and tenacity of condensedmatter theorists,
not to mertion their sheernumbers, that this works anywhere near aswell asit has (Forster 1975; Yeomans
1992; Chaikin and Lubensky 1995).

Despite oft-expressedhopesto the cortrary (by Prigogine (1980), Haken (1977), etc.), the ideal of ex-
panding the free energy or someother Lyapunov functional, in powersof an order parameter fails completely
outside of equilibrium (Anderson and Stein 1987; Cross and Hoherberg 1993). This is not to say that the
idea of broken symmetry isn't useful in understanding pattern formation, nor that there aren't sometech-
nigues (such as\phase equations") which apply to a wide range of pattern-forming systems,and look a bit
like what we're usedto in equilibrium (Manneville 1990; Crossand Hoherberg 1993). But it is to say that
matters are even more ad hoc, and there is even lessreasonto think that current techniquesare universally
applicable. Nobody, for instance, expectsto be ableto nd an order-parameter-type theory of turbulence,
though it's obvious to visual inspection (Van Dyke 1982) that turbulent o ws do have a signi cant degree
of organization, which seemsto involve vorticit y (Chorin 1994).

Going on beyond cornvertional condensedmatter physics, it is hard to seehow any seriouscasecould be
made for taking thermodynamic entropy as a measureof biological order, though somevery great sciertists
(most notably, Schredinger) have done so without, it appears, a secondthought. Biological systemsare
open, sowhat matters, even from the perspective of energetics,is free energy or someother thermodynamic
potential, not entropy as such. Worse, there are many biological processesvhich everyone agreeslead to
more organization which are driven by increasesin entropy (Fox 1988). Fundamertally, as Medawar (1982,
p. 224) nicely put it, \biological order is not, or not merely, unmixedupness." Indeed, he goeson to say that
(p. 226)

In my opinion the audaciousattempt to revealthe formal equivalenceof the ideasof biological
organisation and of thermodynamic order, of non-randomnessand information must be judged
to have failed. We still seeka theory of order in its most interesting and important form, that
which is represenied by the complex functional and structural integration of living organisms.

The only thing wrong with this passageis that, as we've just seen,we don't even have a good theory of
organization for substancesin thermodynamic equilibrium!

If attempts to deal with organization and structure by physicists have beendisappointing, at leastthere
have been some which are worthy of the name. The literature on biological organization (Lotka 1924;
Needham 1936; Needham 1943a;Needham 1943b; Lwo 1962; Miller 1978; Peacake 1983; Mitten thal and
Baskin 1992;Harrison 1993) consistsnot so much of theories, as of expressionsof more or lessintensedesires
for theories, and more or lessclear suggestionsfor what suc theoriesought to do| or elsethey're really not
about biological organization at all, but, say, recycled physical chemistry (Peacake 1983; Harrison 1993).
(The work of Fontana and Buss (1994) is a welcomeexception.) The best that can be hoped for from this
quarter is an array of problems, counter-examplesand suggestions,which is not to be sneezedat, but not
enougheither. In fact, those of us who work on computational medanics suspect that it could be the basis
of a theory of biological order; but that's yet another expressionof desire,and not even a suggestionsomuch
as a hint.

Outside biology, attempts to get a grip on what \organization" might or should mean are even fewer,
and of even lower quality. There is a large literature in economicsand sociology on organization, some of
which is quite interesting (March and Simon 1993; Arrow 1974; Williamson 1975; Simon 1991). But here
\organization" meanssomething like \collection of people with explicitly designatedroles and relations of
authority”, and is contrasted with informal groupings such as\institutions" (Schelling 1978; Elster 1989a;
Elster 1989b; Eggertsson1990; Young 1998; Shalizi 1998b; Shalizi 1999), though both are organized.

Bennett (1985, 1986,1990), apparertly in despair, suggestedde ning \complexity" aswhatever increases
wheneer something self-organizes.The problem with this, asBennett himself realized, is that it's not at all
clear when something self-organizes!But perhapswe can turn this around: for somethingto self-organize,
it must becomemore complex. Is it possibleto comeup with a measureof complexity?
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Complexity

Disorder

Figure 2.1: Generic complexity vs. disorder curve.

2.2 Complexit y Measures, or, the History of One-Hump ed Curv es

It is altogether too easyto come up with complexity measures. An on-line database of them (Edmonds
1997) contains 386 ertries, despite not having beenupdated since 1997, and was surely not comprehensie
even then. Every few months seemsto produce another paper proposing yet another measureof complexity,
generally a quantity which can't be computed for anything you'd actually care to know about, if at all.
These quartities are almost never related to any other variable, so they form no part of any theory telling
us when or how things get complex, and are usually just quarti cation for its own sweet sake.

The rst and still classicmeasureof complexity is Kolmogorov's, which is (roughly) the shortestcomputer
program capable of generating a given string. This quartity is in generaluncomputable, in the sensethat
there is simply no algorithm which can calculate it. This comesfrom a result in computer scienceknown as
the halting problem, which in turn is a disguisedform of Gedel's theorem, and sois a barrier that will not
be overturned any time soon. Moreover, the Kolmogorov complexity is maximized by random strings, soit's
really telling us what's random, not what's complex, and it's gradually cometo be called the \algorithmic
information." It plays a very important role in every discussionof measuring complexity: in a pious act of
homageto our intellectual ancestors,it is solemnly taken out, exhibited, and solemnly put away as useless
for any practical application.!

So we don't want to con ate complexity with randomness,while at the sametime we don't want to
say that things which are completely uniform and orderly are complex either. Complex and interesting
stu should be someplace\in the middle". This is convertionally illustrated by a drawing like Figure 2.1.
The rst sud curvesto appear in the literature seemsto have been the \complexit y-entropy diagrams"
of Crutch eld and Young (1989). One is reminded of kudzu, which was introduced as a useful plant, and
becamea weedonly through thoughtless replication.

There are an immensenumber of ways of cooking up curveswhich look like that, especially sinceyou're
free to choosewhat you mean by \disorder," i.e., what you put on the x axis. A remarkably common
prescription is to multiply \disorder" by \one minus disorder," which of coursegivesa one-tumped curve
right away (Lopez-Ruiz, Mancini and Calbet 1995; Shiner, Davison and Landsberg 1999). There are two

1| perform this ritual in Section 2.3.2 below, with citations.



12

problems with all such measures. The rst is that they don't really agreewith us about what things are
complex (Sole and Luque 1999;Crutch eld, Feldmanand Shalizi 2000a;Binder and Perry 2000). The second
is that they are, to use a term introduced by Feldman and Crutch eld (1998b), over-universal failing to
distinguish betweenstructurally distinct kinds of organization which just sohappento havethe sameamourt
of disorder. In other words, they really don't tell us anything about structure or organization or pattern at
all; they just give us a number, which we may admire at our leisure.

It would be nice to have a measureof complexity that gave us a one-humped curve, but only if we can
do it without cheating, without putting the hump in by hand. And the complexity measurehad better not
be over-universal| it must distinguish betweendi erent kinds of organization; betweendi erent patterns.

So how do patterns work?

2.3 Patterns

Theseambiguities, redundancies,and de cienciesrecall thoseattributed by Dr. Franz Kuhn to
a certain Chineseencyclopedia entitled Celestial Emporium of BenevolentKnowledge On those
remote pagesit is written that animals are divided into (a) those that belongto the Emperor,
(b) embalmed ones,(c) thosethat are trained, (d) sudling pigs, (e) mermaids, (f) fabulous ones,
(g) stray dogs, (h) thosethat areincluded in this classi cation, (i) thosethat tremble asif they
were mad, (j) innumerable ones, (k) those drawn with a very ne camel'shair brush, (I) others,
(m) thosethat have just brokena o wer vase,(n) thosethat resenble ies from a distance.
| J. L. Borges(1964,p. 103),\The Analytical Languageof John Wilkins"

The passageillustrates the profound gulf between patterns, and classi cations derived from patterns,
that are appropriate to the world and help us to understand it and those patterns which, while perhapsjust
as legitimate as logical ertities, are not at all informative. What makesthe Celestial Emporium's scheme
inherertly unsatisfactory, and not just strange, is that it tells us nothing about animals. We want to nd
patterns in a processthat \divide it at the joints, as nature directs, not breaking any limbs in half asa bad
carver might" (Plato, Phaalrus, 265D). (Cf. Crutch eld (1992).)

I'm not talking, here, about pattern formation. I'm not even talking about pattern recognition as a
practical matter as found in, say, neuropsydhology (Luria 1973), psychophysics and perception (Graham
1989), cognitive ethology (Shettleworth 1998), computer programming (Tou and Gonzalez 1974; Ripley
1996), or signal and image processing(Banks 1990; Lim 1990). Instead, I'm asking what patterns are and
how patterns should be representa. | want pattern discovery, not pattern recognition.

Most of what work there is on what patterns are has been philosophical; the part of it worth bothering
with is tied to mathematical logic. Within this, | distinguish two strands. One uses(highly) abstract algebra
and the theory of relations; the other, the theory of algorithms and e ectiv e procedures.

The general idea, in both approaches, is that some object O has a pattern P | O has a pattern
\represented”, \described", \captured", and soonby P | if and only if we canuseP to predict or compress
O. The ability to predict implies the ability to compress,but not vice versa,sol'll stick to prediction. The
algebraic and algorithmic strands di er mainly on how to represen P itself.

I should emphasizehere that \pattern" in this senseimplies a kind of regularity, structure, symmetry,
organization, and so on. Ordinary usagesometimesaccepts,for example, speaking about the \pattern" of
pixelsin a particular slice of between-thannelsvideo snow; but I'll always call that the con gur ation of pixels.

2.3.1 Algebraic Patterns

Although the problem of pattern discovery appears early, in Plato's Meno for example, perhaps the rst

attempt to make the notion of \pattern" mathematically rigorous was that of Whitehead and Russell in
Principia Mathematica. They viewed patterns as properties, not of sets, but of relations within or between
sets,and accordingly they work out an elaborate relation-arithmetic (Whitehead and Russell1925{27,vol. 11,
part IV; cf. Russell1920,ch. 5{6). This starts by de ning the relation-number of a relation betweentwo sets
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asthe classof all the relations that are equivalert to it under one-to-one,onto mappings of the two sets. In
this framework relations share a common pattern or structure if they have the samerelation-number. For
instance, all squarelattices have similar structure sincetheir elemeris sharethe sameneighborhood relation;
as do all hexagonallattices. Hexagonal and square lattices, however, exhibit di erent patterns since they
have non-isomorphic neighborhood relations | i.e., sincethey have di erent relation-numbers. Lesswork
has beendone on this than they | especially Russell(1948) | had hoped.

A morerecernt attempt at developing an algebraic approac to patterns builds on semi-grouptheory and
its Krohn-Rhodesdecomposition theorem. Rhodes(1971) discussesa range of applications of this approac
to patterns. Along these lines, Rhodes and Nehaniv have tried to apply semi-group complexity theory to
biological evolution (Nehaniv and Rhodes1997). They suggestthat the complexity of a biological structure
can be measuredby the number of subgroupsin the decomposition of an automaton that describes the
structure.

Yet another algebraic approach has beendeveloped by Grenander and co-workers, primarily for pattern
recognition (Grenander 1996). Essertially, this is a matter of trying to invent a minimal set of geneators
and bonds for the pattern in question. Generatorscan adjoin ead other, in a suitable n-dimensional space,
only if their bonds are compatible. Each pair of compatible bonds speci es at once a binary algebraic
operation and an obsenable elemer of the con guration built out of the generators. (The construction in
Appendix B.2, linking an algebraic operation with concatenationsof strings, is analogousin a rough way,
as are the \observable operator models" of Jaeger(2000).) Probabilities can be attached to these bonds;
these are postulated to be sudc asto give a Gibbs distribution over ertire con gurations. Grenander and
his colleagueshave usedthesemethods to characterize, inter alia, seeral biological phenomena(Grenander,
Chow and Keenan 1991; Grenander and Manbed 1993). While the theory we'll end up with in chapters 4
and 10 could be phrasedin terms of generatorsand bonds, we give a constructive procedurefor making them
(unlik e the trial-and-error approach of Grenander), and our Gibbs distributions are derived, not postulated.

2.3.2 Turing Mechanics: Patterns and E ectiv e Pro cedures

The other path to patterns follows the traditional exploration of the logical foundations of mathematics, as
articulated by Frege and Hilbert and pioneeredby Church, Gedel, Post, Russell, Turing, and Whitehead.
This relatively more popular approach beginswith Kolmogorov and Chaitin, who wereinterestedin the exact
reproduction of an individual object (Kolmogorov 1965; Chaitin 1966; Kolmogorov 1983; Li and Vitanyi
1993); in particular, they cared about discrete symbol systems,rather than (say) real numbers or smooth
vector elds. The candidatesfor expressingthe pattern P were universal Turing machine (UTM) programs
| specically, the shortest UTM program that can exactly produce the object O. This program's length
is called O's Kolmogorov-Chaitin complexity. Note that any scheme| automaton, grammar, or what-not
| that is Turing equivalent and for which a notion of \length" is well de ned will do as a represertational
scheme. Sincewe can corvert from one sud deviceto another| say, from a Post tag system (Minsky 1967)
to a Turing machine | with only a nite description of the rst system,sud constarts are easily assimilated
when measuring complexity in this approad.

In particular, considerthe rst n symbols O, of O and the shortest program P,, that producesthem.
What happensto the limit

jPnj .

n!Jl:n T ' (2.1)
where jPj is the length in bits of program P? On the one hand, if there is a xed-length program P that
generatesarbitrarily many djgits of O, then this limit vanishes.Most of our interesting numbers, rational or
irrational | suchas7, ,e 2| areofthis sort. Thesenumbers are eminertly compressible:the program
P is the compresseddescription, and soit capturesthe pattern obeyed by the sequencedescribingO. If the
limit goesto 1, on the other hand, we have a completely incompressibledescription and conclude, following
Kolmogorov, Chaitin, and others, that O is random (Kolmogorov 1965; Chaitin 1966; Kolmogorov 1983; Li
and Vitanyi 1993;Martin-Leof 1966;Levin 1974). This conclusionis the desiredone: the Kolmogorov-Chaitin
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framework establishes,formally at least, the randomnessof an individual object without appealsto proba-
bilistic descriptions or to ensenbles of reproducible events. And it doesso by referring to a deterministic,
algorithmic represenation | the UTM.

There are many well-known di culties with applying Kolmogorov complexity to natural processesFirst,
as a quartity, it is uncomputable in general, owing to the halting problem (Li and Vitanyi 1993). Second,
it is maximal for random sequencesthis is either desirable, as just noted, or a failure to capture structure.
Third, it only applies to a single sequence;again this can be either good or bad. Fourth, it makes no
allowance for noise or error, demanding exact reproduction. Finally, lim,;; jP,j=n can vanish, although
the computational resourcesneededto run the program, such astime and memory, grow without bound.

None of theseimpedimerts have kept researtersfrom attempting to useKolmogorov-Chaitin complexity
for practical tasks | suc as measuringthe complexity of natural objects (e.g. Gurzadyan (1999)), as a
basis for theories of inductiv e inference (Solomono 1964; Vit anyi and Li 1999), and generally as a means
of capturing patterns (Flake 1998). Rissanen'scommerts on this can hardly be bettered, sol'll quote him
(Rissanen1989,p. 49):

It has beensometimesenthusiastically claimed that the algorithmic [i.e., Kolmogorov] com-
plexity provides an ideal solution to the inductiv e inferenceproblem, and that “all' we needis to
nd an approximation to the non-computable algorithmic complexity and usethe result to do
prediction and the other inferencesof interest. Well, this is a tall order, for there is nothing in
a universal computer that helpsusto nd a good model of a string. In fact, if we already know
the relevant properties of the string we can always write good programsfor it, but we don't learn
the properties by writing programsin the hopesof nding short ones!

Someof thesedi culties have beenaddressedby later workers. Bennett's logical depth the number of
computational stepsthe minimal-length program P needsto produce O, tries to accourt for time resources
(Bennett 1985;Bennett 1986;Bennett 1990). Koppel's sophistiation attempts to separateout the \regular-
ity" portion of the program from the random or instance-speci ¢ input data (Kopp el 1987;Koppel and Atlan
1991). Ultimately , however, all theseextensionsand generalizationsremain in the UTM, exact-reproduction
setting and soinherit inherent uncomputability. None of them is any good for anything practical.

2.3.3 Patterns with Error

An obvious next step is to allow our pattern P some degreeof approximation or error, in exchange for
shorter descriptions. We lose perfect reproduction of the original con guration from the pattern. Given the
ubiquity of noisein nature, this is a small price to pay. We might also say that sometimeswe are willing
to accept small deviations from a regularity, without really caring what the precisedeviation is. As many
have pointed out (e.g., Crutch eld 1992), this is what we do in thermodynamics, where we throw away vast
amounts of uselessmicroscopicdetail in order to get workable macroscopicdescriptions.

Someinteresting philosophical work on patterns-with-error hasbeendone by Dennett, with referencenot
just to questionsabout the nature of patterns and their emergencebut alsoto psycology (Dennett 1991).
The intuition is that truly random processes<an be modeled very simply | to model coin-tossing, toss a
coin. Any prediction schemethat is more accuratethan assumingcomplete independenceipso facto captures
a pattern in the data. There is thus a spectrum of potential pattern-capturers ranging from the assumption
of pure noiseto the exact reproduction of the data, if that is possible. Dennett notesthat there is generally
a trade-o between the simplicity of a predictor and its accuracy and he plausibly describes emergent
phenomena(Crutch eld 1994a;Holland 1998) as patterns that allow for a large reduction in complexity for
only a small reduction in accuracy’. Of course,Dennett wasnot the rst to considerpredictive schemesthat
tolerate error and noise; we'll look at some of the earlier work in Chapter 6. However, to my knowledge,
he was the rst to have made such predictors a certral part of an explicit accourt of what patterns are.
His accourt lacks the mathematical detail of the other approacheswe have consideredso far, and it relies
on the inexact prediction of a single con guration. In fact, it relies on exact predictors that are \fuzzed

2| develop this idea quantitativ ely in Chapter 11.2.
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up" by noise. The introduction of noise, however, brings in probabilities, and their natural setting is in
ensenbles. It is in that setting that the ideas computational medanics shareswith Dennett can receive a
proper quartitativ e treatment, and in which we will seethat we don't needto invoke exact predictors at all.

2.3.4 Causation

We want our represenations of patterns in dynamical processesto be causal| to say how one state
of aairs leadsto or producesanother. Although a key property, causality enters the theory only in an
extremely weak sense,the weakest one can use mathematically, which is Hume's (Hume 1739): one class
of event causesanother if the latter always follows the former; the e ect invariably succeedsthe cause.
As good indeterminists, in the following | replacethis invariant-successionnotion of causality with a more
probabilistic one, substituting a homogeneoudistribution of successordor the solitary invariable successor.
(A precisestatemert appearsin De nition 13'sde nition of causal states) This approach resultsin a purely

phenomenologicalstatemert of causality, and so it is amenableto experimentation in ways that stronger
notions of causality | e.g., that of Bunge (1959)| arenot. Salmon(1984)independertly reached essetially

the sameconceptof causality by philosophical argumerts.

2.3.5 Synopsis of Pattern

We want an approach to patterns which is at once
Algebaic, giving us an explicit breakdown or decomposition of the pattern into its parts;
Computational, shawving how the processstoresand usesinformation;
Calculable analytically or by systematic approximation;
Causal telling us how instancesof the pattern are actually produced;and
Naturally stochastic, not merely tolerant of noisebut explicitly formulated in terms of ensenbles.

Computational medanics satis es all thesedesiderata.
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Chapter 3

The Basic Case of Computational
Mec hanics: Memoryless Transducers

3.1 The Setup

Consider two discrete random variables X (taking valuesfrom X) and Y (taking valuesin Y)!. We think
of X asthe causesor inputs to some process,and Y asthe e ects or outputs. Causation is in general
stochastic, so we represen this by saying that Y is a random function of X. We assumethat Y depends
only on the current value of X, and not on any previous history of inputs. Let's call something which ts

this description a memorylesstransduer. Many di erent physical systemsare memorylesstransducers. So,
a little more abstractly, are many problemsin biology and sccial science,e.g., the output might be whether
a person dies of lung disease,and the inputs various risk factors (genotype, smoking, working in a mine,
whether or not the mine hasa union, etc.). The task is to predict Y aswell aspossiblefrom X . We'd like to
know which aspects of the input are relevant to the output, becausein generalnot all of them are, though
whether a given feature is relevant can depend on what values other featurestake on. We want to know all
the distinctions we can make about X which make a di erence to the distribution of Y.

3.2 E ectiv e States

Any prediction schemetreats someinputs the samewhenit calculatesits predictions. That is, any prediction
schemeis sensitive, not to the inputs themselves, but to equivalenceclasse$ of inputs. Generally it doesso
implicitly; but it is much better to be explicit about this.

Denition 1 (Eectiv e States of Memoryless Transducers) An e ectiv e state is an equivalene class
of inputs. A partition of X is an e ectiv e state class For each e ective state class, written R, there is a
function : X 7! R which map the current input into the e ective state in which it resides. We write the
random variable for the current e ective state as R, and its realizationsas ; R = (X), = (x). When
two inputs X;; X, belongto the samee ective state, we write x;  X».

The collection of all e ectiv e state classess called Occam's pool.
At this point, we needa way to measurehow well a classof e ectiv e states lets us predict the output.
The tools to do this are provided by information theory, which is explained in Appendix A.2.

1Here, and as nearly as possible through this book, upper-caseitalic letters will indicate random variables, and lower-case
ones their realizations.
2For a review of equivalence classes, partitions, and equivalence relations, seeApp endix A.1.
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De nition 2 (Predictiv e Power of E ectiv e States) We measure the predictive power of an e ective
state classR by the entropy of outputs, conditional on the e ective state, H[Y]jR]. R has more predictive
power than R °if and only if H[YjR] < H[Y]RY.

In general, e ectiv e states have lesspredictive power than the original input.
Lemma 1 (The Old Country Lemma) For any classof e ective statesR ,

HIYjR] HI[YjX]: (3.1)

Proof. By Eq. A.25, for any function f, H[Yjf (X)] HI[YjX]. But for every R, there isan sud that
R = (X). HenceH[Y]jR]= HI[Y] (X)], and the lemma is proved.

Remark. The reasonthis is the \Old Country Lemma" will becomeclear when we considerits application
to time seriesin Chapter 4.

However, somee ectiv e state classesare as predictiv e asthe original inputs; we call such states prescient

De nition 3 (Prescien t States for Memoryless Transduction) A setof statesR is presciert if and
only if it has as much predictive power as the complete input space, i.e., i H[Y]jR] = H[YjX]. We mark
prescient states (and sets of states, etc.) by putting a hat over the variables names: ®;R; b, etc.

We now establish a link between prescienceand the statistical notion of \su ciency" (explained in
Appendix A.5).

Lemma 2 (Prescien t States Are Sucien t Statistics) |If ® is a prescientclassof e ective states, then
R is a sucient statistic for predicting Y, and vice versa.

Proof. By the de nition of mutual information, I (Y; F‘?) = HJ[Y] H[lei?]. But, by the de nition of
prescien states,H [YjF‘?] = H[YjX]. Sol(Y; Ii?) = H[Y] HI[YjX]=1(Y;X). Soby Proposition 6, presciert
states are su cien t statistics. Esserially the samereasoningrun in reverseprovesthe cornversepart of the
theorem. QED.

3.2.1 Minimalit y and Prediction

Let's invoke Occam's Razor: \It is vain to do with more what can be done with less" (Ockham 1964). To
usethe razor, we needto x what is to be\done" and what \more" and \less" mean. The job we want done
is accurate prediction, reducing the conditional erntropies H[YJR] asfar as possible,the goal being to attain

the bound setby Lemma 1, with a prescien set of states. But we want to do this assimply as possible,with

as few resourcesas possible. We already have a measureof uncertainty, so we needa measureof resources.
Sincethere is a probability measureover inputs, there is an induced measureon the -states2® Accordingly,
we de ne the following measureof complexity.

De nition 4 (Statistical Complexit y of States) The statistical complexity of a classR of statesis

C (R) HIR] : (3.2)

The in C reminds usthat it is a measure-theoreticproperty and dependsultimately on the distribution
over the inputs, which inducesa measureover states.

The statistical complexity of a state classis the averageuncertainty (in bits) in the transducer's current
state. This, in turn, is the sameas the averageamount of memory (in bits) that the transducer appears

3This assumes is at least nearly measurable. SeeApp endix B.3.2.2.
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to retain about the input, giventhe chosenstate classR . (We will later seehow to de ne the statistical
complexity of the transducer itself.) The goal is to do with aslittle of this memory as possible. Restated
then, we want to minimize statistical complexity, subject to the constraint of maximally accurate prediction.

The idea behind calling the collection of all partitions of X Occam'spool should now be clear: One wants
to nd the shallowest point in the pool. This we now do.

3.3 Causal States

Denition 5 (Causal State for Memoryless Transduction) The causalstate are the rangeof the func-
tion

(x) = £x9P(YjX = x) = P(YjX = x%g : (3.3)

If (x)= (x9, then P(YjX = x) = P(YjX = x9, and wewrite x x% We denotethe classof causal states
by S, the random variable for the current causal state by S, and a particular causal state by

Each causalstate hasa unique assaiated distribution of outputs P(Y = yjS = ), calledits morph. In
generalevery e ective state hasa morph, but two e ectiv e statesin the samestate classmay very well have
the samemorph. Moreover, the causal states have the important property that all of their parts have the
samemorph. We make this notion a little more precisein the following de nitions, which build to important
results later on, especially the crucial Re nement Lemma (Lemma 4).

3.3.1 Homogeneit y

The following de nitions are inspired by Salmon (1984).

De nition 6 (Strict Homogeneit y) A set X is strictly homogeneouswith resgct to a random variable
Y whenthe conditional distribution for Y, P(YjX), is the samefor all measurable subsetsof X.

De nition 7 (W eak Homogeneit y) A setX is weakly homogeneouswith resgect to Y if X is not strictly
homaeneus with respect to Y, but X nX (X with X removal) is, where X is a subsetof X of measure
0.

Lemma 3 (Strict Homogeneit y of Causal States) A process'scausal states are the largest subsetsof
inputs that are all strictly homayeneus with resgect to the output.

Proof. We must show that, rst, the causalstates are strictly homogeneouswith respect to output and,
second, that no larger strictly homogeneoussubsetsof inputs could be made. The rst point, the strict
homogenei of the causalstates, is evidert from De nition 5: By construction, all elemens of a causalstate
have the sameconditional distribution for the output, soany part of a causalstate will have the conditional
distribution asthe whole state. The secondpoint likewisefollows from De nition 5, sincethe causal state
cortains all the inputs with a given conditional distribution of output. Any other set strictly homogeneous
with respect to output must be smaller than a causal state, and any set that includes a causal state as a
proper subsetcannot be strictly homogeneous.QED.

3.3.2 Optimalities and Uniqueness

Let's seewhat the causalstates are good for. Let's start by seeinghow well we can predict the output from
knowing the causalstate.

Theorem 1 (Prescience and Suciency of Causal States) The causal states S are prescient, and
Su cient statistics.
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Proof. It is clear that P(Y = yjS = (x)) = P(Y = yjX = x), for all x;y. Thus, by De nition 66, the
causal states are su cien t statistics for predicting the output, and so, by Lemma 2, they are presciert.

Lemma 4 (Renemen t Lemma) For all prescientrivals ® and for eachb2 P, thereisa 2 S and a
measure-0 subsethy b, possiblyempty, suchthat bn by

Proof. Weinvokea straightforward extensionof Theorem2.7.30f Cover and Thomas (1991): If X 1; X 2;:::
X, are random variables over the sameset A, ead with distinct probability distributions, a random
variable over the integersfrom 1 to n such that P( = i) = ;, and Z a random variable over A suc that
Z =X ,then

H[Z] = H i X

iH[Xi]: (3.4)
i=1

In words, the entropy of a mixture of distributions is at least the meanof the entropies of those distributions.
This follows sinceH is strictly concave, which in turn follows from x logx being strictly corvex for x 0.
We obtain equality in Eq. 3.4if and only if all the ; areeither O or 1, i.e., if and only if Z is at least weakly
homogeneougDe nition 7).

The conditional distribution of outputs for ead rival state can be written asa weighted mixture of the
distributions of one or more causalstates. Thus, by Eq. 3.4, unlessevery is at least weakly homogeneous
with respect to outputs, the entropy of Y conditioned on R will be higher than the minimum, the entropy
conditioned on S. So, in the caseof the maximally predictive R, every b 2 ® must be at least weakly
homogeneouswith respectto Y. But the causalstates are the largest classeghat are strictly homogeneous
with respect to Y (Lemma 7). Thus, the strictly homogeneouspart of eath b 2 ® must be a subclass,
possibly improper, of somecausalstate 2 S. QED.

Remark 1. One can provide a more elaborately algebraic and lessverbal proof of this Lemma. We do
this for the caseof time seriesin Appendix B.4, but the reader may easily adapt the argumernt there to this
simpler case.

Remark 2. The content of the lemma can be made quite intuitiv e, if we ignore for a momert the measure-
0 set by of inputs mertioned in its statemert. It then assertsthat any alternativ e partition ® that is as
prescient asthe causalstates must be a re nement of the causal-statepartition. That is, eact R, must be
a (possibly improper) subsetof someS;. Otherwise, at least one ®; would have to cortain parts of at least
two causalstates. And so, using this R to predict the output would lead to more uncertainty about Y than
using the causal states.

Adding the measure-Gset by of inputs to this picture doesnot changeits heuristic content much. Precisely
becausetheseinputs have zero probability, treating them in the wrong way makesno discernible di erence
to predictions, morphs, and soon. There is a problem of terminology, however, since there seemsto be no
standard name for the relationship betweenthe partitions ® and S. We proposeto sa that the former is
are nement of the latter almost everywhee or, simply, a re nement a.e.

Remark 3. One cannot work the proof the other way around to show that the causal states have to
be a re nement of the equally prescien R-states. This is becausethe theorem borrowed from Cover and
Thomas (1991), Eq. 3.4 only applies when we can reduce uncertainty by specifying from which distribution
one chooses.Sincethe causalstates are constructed soasto be strictly homogeneousvith respect to futures,
this is not the case.Lemma 3 and Theorem 1 together protect us.

Remark 4. Becausealmost all of ead presciert rival state is wholly contained within a single causal
state, we can construct a function g : ® 7! S, suc that, if (x) = b, then (x) = g(b) almost always.
We can even sa that S = g(Ii?) almost always, with the understanding that this meansthat, for ead b,

P(S = g(b)jR = b) = 1.
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Theorem 2 (Minimalit y of Causal States) For any prescient state class®,

C(R) C(S): (3.5)

Proof. By Lemma 4, Remark 4, there is a function g such that S = g(Ii?) almost always. But H[f (X)]
H[X] (Eg. A.22) and so

H[S]= H[g(R)] HIR]: (3.6)

but C (®) = H[R] (De nition 4). QED.

Remark. If the distribution over inputs P(X) changes,but, for eac x, but the conditional distribution
of outputs P(YjX = x) doesnot, the causal states also do not change. In general, the numerical value of
the statistical complexity of the causalstates will change,but their minimality amongthe prescien states
will not.

Corollary 1 (Causal States Are Minimal Sucien t) The causal states are minimal su cient statis-
tics for predicting the output.

Proof. We saw in the proof of Theorem 2 how to construct a function from any prescier state classto
the causalstates. From Lemma 2, the presciert state classesconsistof all and only the predictively su cien t
statistics. Therefore, the causal states are functions of all the su cien t statistics, and so by De nition 67,
they are the minimal su cien t statistics.

Theorem 3 (The Causal States Are Unique) For all prescientrivals ®,ifC (F@) = C (S), thenthere
exists an invertible function between ® and S that almost always preservesequivalene@ of state: ® and
are the sameas S and , respectively, exept on a set of inputs of measure 0.

Proof. From Lemma 4, we know that S = g(Ii?) almost always. We now show that there is a function f
such that R = f (S) almost always, implying that g = f ! and that f is the desiredrelation betweenthe
two setsof states. To do this, by Eq. A.23 it is su cien t to show that H [Ii?jS] = 0. Now, it follows from an
information-theoretic identity (Eg. A.19) that

H[S] HI[SjR]= H[R] H[RS]: (3.7)

Since,by Lemma 4 H [Sij] = 0, both sidesof Eq. 3.7 are equalto H[S]. But, by hypothesis,H [Ii?] = HJS].
Thus, H[FbjS] = 0 and so there exists an f such that R = f (S) almost always. We have then that
f(g(F‘?)) = R and g(f(S)) = S, sog = f 1. This implies that f presenes equivalence of states almost
always: for almost all x;x°2 X, (x) = (x9 if andonly if (x) = (x9. QED.

Remark. As in the caseof the Re nement Lemma 4, on which the theorem is based, the measure-0
caveats seemunavoidable. A rival that is as predictive and as simple (in the senseof De nition 4) as the
causal states, can assigna measure-0set of inputs to dierent statesthan does,but no more. This makes
sense:such a measure-Oset makesno di erence, sinceits membersare never obsened, by de nition. By the
sametoken, however, nothing prevents a minimal, presciert rival from disagreeingwith the causalstates on
those inputs.

De nition 8 (Statistical Complexit y of Memoryless Transduction) The statistical complexity of a
transduction process, written simply C , is equal to the statistical complexity of its causal states, C (S) =
HI[S].

Remark. This de nition is motivated by the minimal statistical complexity of the causal states, and by
their uniqueness.
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Theorem 4 (Control Theorem for Memoryless Transduction) For any setof e ective statesR, the
reduction in the uncertainty of the outputs, conditional on knowing the e ective state, H[Y] H]JY]jR], is at
most C .

Proof. This one, honestly, is simple.

HIY] HIYiR] HIY] HI[Y]S] (3.8)
= 1(Y;9) (3.9)

= HI[S] H[SjY] (3.10)

H[S]= C (3.11)

QED.

Remark. This result is inspired by, and is a version of, Ashby's \La w of Requisite Variety" (Ashby 1956,
ch. 11), which states that applying a cortroller can reducethe uncertainty in the cortrolled variable by at
most the entropy of the control variable. (Touchette and Lloyd (1999) recertly restated this result, without
credit to Ashby.) Our control theorem is a statemert about the degreeof cortrol we can exert over the
output by xing the input, and sothe causalstate. Note that the inequality will be saturated if H[SjY] = O,
which will be the caseif ead output is due to a unique causalstate. Sincethis can't be ruled out a priori,
we cannot, in general, sharpen the upper bound any further.

3.4 Other Approac hes to Memoryless Transduction

This is, of course, a very old, very general and very important problem. In recert years a wide array of
methods have arisen for tackling it. We consider here three which are particularly akin to computational
medanics.

3.4.1 Graphical Mo dels

Someof the most widely applied methods for this problem are thosethat travel under the label of \graphical

models" (Loehlin 1992; Lauritzen 1996; Pearl 2000; Spirtes, Glymour and Sceines2001). These involve
represering the input and the output asa number of distinct variables(onefor eat quantit y we can measure,
essetially), and positing a number of hidden or \latent" variables in between. Each variable, manifest or
latent, is represerted by a node in a graph. A directed edgeruns from variable A to variable B if and only
if A is a direct causeof B. Assuming that what's called the \causal Markov condition" is met* and some
other, more technical requiremerts are satis ed, reliable techniquesexist for inferring which variables cause
which, and through what intermediate, latent variables.

While these methods are ideologically akin to computational medanics (Spirtes, Glymour and Scheines
(2001) in particular), they are not quite the same. In particular, they do not seekto directly partition the
spaceof inputs X into the divisions which are relevant to the output; at bestthis is implicit in the structure
of connectionsbetween the manifest inputs and the latent variables. Moreover, mathematical tractabilit y
generallyrestricts practitioners to fairly simple forms of dependencebetweenvariables, often evento linearity.
Our method doesnot labor under theserestrictions. It beginsdirectly with a partition of the input space,
to which everything is referred. In e ect, the computational mechanics approac is to always construct a
graph with only three variables, the input, the causalstate, and the output, connectedin that order. The
work comesin constructing the middle part!

4Consider any variable A in the graph G. Write the set of variables which are direct causesof A as C(A). Write the set
of variables which are e ects of A, whether direct or indirect, as E(A), i.e., B 2 E(A) if and only if there is a path from A to
B. Finally, let N(A) = G n(C(A)[ E(A)). Then the causal Mark ov condition is that A is conditionally independent of all
variables in N (A) given C(A), that A.LLN (A)jC(A).
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3.4.2 The Information-Bottlenec k Metho d

Tishby, Pereira and Bialek (1999) posesthe following problem. Given a joint distribution over the input X
and the output Y, nd an intermediate or \b ottleneck" variable X which is a (possibly stochastic) function
of X such that X is more compressedthan X, but retains predictive information about Y. More exactly,
they ask for a conditional distribution P(X = xjX = x) that minimizes the functional

F=105X)  105Y); (3.12)

where is a positive real number. Minimizing the rst term represerns the desireto nd a compressionof
the original input data X ; maximizing the secondterm represens the desireto retain the ability to predict
Y.5> The coecient governsthe trade-o betweenthesetwo goals:as ! 0, we loseinterestin prediction
in favor of compression;whereasas ! 1 , predictive ability becomesparamourt.

Extending classicalrate-distortion theory, the authors are not only able to state self-consisten equations
that determine which distributions satisfy this variational problem, but give a convergert iterativ e procedure
that nds one of thesedistributions. They do not addressthe rate of corvergence.

Now, I (Y;X) = H[Y] HI[YjX]. SinceH[Y]is xed, maximizing I (Y;X) is the sameas minimizing
H[YjX]. That is, to maximize the predictive information, the bottleneck variable should be prescien. But
the most compressedpresciert states| the oneswith the smallestentropy | are the causalstates. Thus,
they are preciselywhat should be deliveredby the information-b ottleneck method in the limit where ! 1 .
It is not immediately obvious that the iterativ e procedure of Tishby, Pereira and Bialek (1999) is still valid
in this limit. Nonethelessthat is the partition satisfying their original constraints is evidert.

We note in passingthat Tishby, Pereira and Bialek (1999) assertthat, when su cien t statistics exist,
then compression-with-prediction is possible. Conversely we have shown that the causal states are always
su cien t statistics.

3.4.3 The Statistical Relevance Basis

Here is one last solution to the problem of discovering conciseand predictive hidden variables. In his books
of 1971 and 1984, Wesley Salmon put forward a construction, under the name of the \statistical relevance
basis", that is identical in its essetials with that of causalstatesfor memorylesstransducers® Owing to the
rather di erent aims for which Salmon'sconstruction wasintended| explicating the notion of \causation”
in the philosophy of science| no one seemsto have proved its information-theoretic optimality properties
nor evento have noted its connectionto su cien t statistics. Brie y: if a nontrivial su cien t partition of the
input variables exists, then the relevance basisis the minimal su cien t partition.

3.5 Summary

Let's recap what we've done in this chapter, sincewe're going to be going through a similar exerciseover
and over again.

We start with onevariable (or set of variables) which causes,jn somestatistical fashion, another variable.
We want to predict the output, giventhe input, asaccurately and assimply as possible. We summarizethe
input in an e ectiv e state, and measurepredictive power by the entropy of the output conditional on the
e ectiv e state, and the complexity of the predictor by the entropy of the e ectiv e state, i.e., the amount of
information the state retains from the input. The predictive power of e ectiv e states is limited by that of
the original input; states which attain this limit are presciert. Our goal is to minimize complexity, subject
to the constraint of prescience.

5Since X = g(X; ) for some auxiliary random variable , a theorem of Shannon's assuresus that 1(X;Y) 1(X;Y) and
the transformation from X to X cannot increase our ability to predict Y (Shannon 1948, App. 7).

6] discovered Salmon's work by accident in May 1998, browsing in a used book store, so it's not cited in computational
mechanics papers up to and including Crutc h eld and Shalizi (1999).
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We introduce a particular partition of the inputs, the causalstates, which treats inputs as equivalert if
they lead to the sameconditional distribution of outputs. This is prescien, sincethe distribution of outputs
conditional on the causalstate is, by construction, the sameasthat conditional on the input. We then use
homogeneil to prove a re nement lemma, telling us that any prescien rival to the causal states must be a
re nement of them almost everywhere. The re nement lemma, in turn, leadsdirectly to the result that the
causal states are the minimal presciert states, and to the uniquenessof the causal states.

The bulk of the work in the rest of this book will be setting up these sametricks for processeswvhich
are more subtle than memorylesstransduction, and examining the extra implications for the causal states
of those subtleties. We start with time series.
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Chapter 4

Computational Mechanics of Time
Series

The next chapter is devoted to the statistical medianics of time series. This is another eld
in which conditions are very remote from those of the statistical medcanics of heat enginesand
which is thus very well suited to serve as a model of what happensin the living organism.
[INorb ert Wiener (1961, p. 59)

4.1 Paddling Around in Occam's Pool

4.1.1 Pro cesses

Let's restrict ourselvesto discrete-valued, discrete-time stationary stochastic processes.(See Section 11.4
for ways in which these restrictions might be lifted.) Intuitiv ely, such processesare sequencef random
variables Sj, the valuesof which are drawn from a countable set A. We let i range over all the integers,and
so get a bi-in nite  sequence

$
S=:::S 1SS (4.1)

In fact, we can de ne a processin terms of the distribution of such sequenceqcf. Billingsley 1965; Gray
1990).

Denition 9 (A Pro cess) Let A beacountableset. Let = A bethesetof bi-in nite sequenescomposal
from A, T; : 7! A be the measurable function that returns the i" elements; of a bi-in nite sequene
I 2 , and F the -algebm of cylinder setsof . Adding a probability measure P gives us a probability

spasge ( ;F;P), with an assaiated random variable S. A processis a seuene of random variables S; =
Ti(S);i 2

It foIIowsfrom De nition 9that there are well de ned probability distributions for sequencesf every nite
length. Let st be the sequenceof St;St+1;:0: S+ 1 of L random variables beginning at S;. st ;, the

null sequence L|keW|se st denotesthe sequenceof L random variables gomg up to S;, but not including
L
it; S —st L. Both st and st take values from st 2 A'- Similarly, St and S; are the semi-in nite
sequencestarting from and stopping at t and taking values's and S, respectively.
Intuitiv ely, we can imagine starting with distributions for nite-length sequencesand extending them
gradually in both directions, until the in nite sequenceis reached as a limit. While this can be a useful
picture to have in mind, de ning a processin this way raises some subtle measure-theoreticissues,suc
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as how distributions over nite-length sequencedimit on the in nite-length distribution. To evade these
guestions,we start with the latter, and obtain the former by \marginalization". (The rst chapter of Gray
(1990) has a particularly clear exposition of this approacd.)

De nition 10 (Stationarit y) A processS; is stationary if and only if
1L 1L
P(S; = s") = P(Sp=s") ; (4.2)
forallt2 ,L2 *,andall st 2A".

!
In Iother words, a stationary processis one that is time-translation invariant. Consequetly, P(stz!s) =
! |
P(So='s) and P(St= s) = P(So= s), and sol'll drop the subscripts from now on.
L

! 1L
Il call s and S pastsor historiesand S and S , futures I'll needto refer to the classqf all measurable
setsof histories; this will be (S)! Similarly, the classof all measurablesetsof futures is (S). It is readily

S L |
chedked (Upper 1997)that (S) = i=1 (S ), and likewisefor (S).
This is a good place to note that strict stationarit y, as de ned above, islactually a stronger property

than this chapter needs. All we really require is that P(S;2 Fj Sy= s) = P(So2 Fj So= s), for all t and
]

for all F 2 (S). This property, of time-invariant transition probabilities, should | guessbe named some
form of \nomogeneity," by analogy with the corresponding property for Markov processesbut that nameis
pre-empted. Solet's call this conditional stationarity instead.

4.1.2 The Pool

!
Our goal is to predict all or part of S using somefunction of somepart of S. As before, let's start with
e ectiv e states, and classesof e ectiv e states.

Denition 11 (Eectiv e States) A partition of S is an e ectiv e state class Each 2 R will be called

a state or an e ectiv e state. When the current history s is included in the set , the processis in state
De ne a function from histories to e ective states:

CST'R: (4.3)

A speci ¢ individual history s 2 S mapsto a specic state 2 R ; the random variable S for the past maps
to the random variable R for the e ective states.

It makeslittle di erence whether onethinks of asbeinga function from a history to a subsetof histories
or a function from a history to the label of that subset. Each interpretation is corveniert at di erent times,
and I'll useboth.

We could useany function de ned on S to partition that set, by assigningto the same all the histories

s on which the function takesthe samevalue. Similarly, any equivalencerelation on S partitions it. (See
Appendix A.1 for more on equivalencerelations.) Due to the way | de ned a process'sdistribution, ead

e ectiv e state hasa well-de ned distribution of futures?, though other statescould have the sameconditional

distribution. Specifying the e ectiv e state thus amounts to making a prediction about the process'sfuture.

All the histories belongingto a given e ectiv e state are treated as equivalent for purposesof predicting the
future. (In this way, the framework formally incorporates traditional methods of time-series analysis; see
Section 6.1.)

The de nition of statistical complexity, De nition 4, applies unchangedto time seriese ectiv e states.

Call the collection of all partitions R of the set of histories S Occam's pool.

1Conventionally , this ought to be (S), but, asthe reader will see,that notation would be confusing later on.

2This is not true if is not at least nearly measurable (see App endix B.3.2.2). To paraphrase Schutz (1980), you should
assumethat all my e ectiv e-state functions are su cien tly tame, measure-theoretically, that whatever induced distributions |
invoke will exist.
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Figure 4.1: A schematic picture of a partition of the set S of all histories into someclassof e ectiv e states:
R = fR; :i = 1;2;3;4g. Note that the R; neednot form compact sets;they're drawn that way for clarity.
Imagine Cantor setsor other, more pathological, structures.

4.1.3 Patterns in Ensembles

It will be lcon\/eniert to have a way of talking about the uncertainty of the future. Intuitiv ely, this would
just be H[S], but in generalthat quartity is in nite and awkward to manipulate. (The special casein which

! 1L
H[S]is nite is dealt with in Appendix B.5.) Normally, I'll evadethis by consideringH[S ], the uncertainty
of the next L symbols, treated asa function of L. On occasion,l'll referto the entropy per symbol or entropy
rate (Shannon 1948; Cover and Thomas 1991):

! . 1, L
h[s] Jim -HIS T: (4.4)
and the conditional entropy rate,
Lo .1 L
h[s jX] Jim--HIS JXT; (4.5)

where X is somerandom variable and the limits exist. For stationary stochastic processesthe limits always
exist (Cover and Thomas 1991, Theorem 4.2.1, p. 64).
Theseertropy rates are alsoalways boundedabove by H [S]; which is a special caseof Eq. A.14. Moreover,
]

if h[S] = HI[S], the processconsistsof independert variables| independert, identically distributed (I1D)
variables, in fact, for stationary processes.

Denition 12 (Capturing a Pattern) R capturesa pattern if and only if there existsan L such that

H [!SLjR] < LH[S]: (4.6)

This says that R captures a pattern when it tells us something about how the distinguishable parts of a
processa ect ead other: R exhibits their dependence. (I'll also speak of , the function assaiated with
pasts, as capturing a pattern, sincethis is implied by R capturing a pattern.) Supposing that these parts
do not a ect ead other, then we have 11D random variables, which is as closeto the intuitiv e notion of
\patternless" as oneis likely to state mathematically. Note that, becauseof the independencebound on
joint ertropies (Eq. A.14), if the inequality is satis ed for somelL, it is alsosatis ed for every L°> L. Thus,

1L
the dierence H[S] H[S jR]=L, for the smallestL for which it is nonzero,is the strength of the pattern
captured by R . Let's now mark an upper bound (Lemma 5) on the strength of patterns; later we'll seehow
to attain this upper bound (Theorem 5).
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4.1.4 The Lessons of History

We are now in a position to prove a result about patterns in ensenblesthat will be usefulin connectionwith
later theoremsabout causalstates.

Lemma 5 (Old Country Lemma) For all R andforallL2 *,

1 L 1 L
H[S jR] HI[S jS]: 4.7)

Proof. By construction (Eq. 4.3), for all L,

HIS jR1= HIS | ()] .8)

But

HIS | (S)] HIS jsl; 4.9)

sincethe entropy conditioned on a variable is never more than the entropy conditioned on a function of the
variable (Eq. A.25). QED.

Remark 1. That is, conditioning on the whole of the past reducesthe uncertainty in the future to assmall
a value as possible. Carrying around the whole semi-in nite past is rather bulky and uncomfortable and is a
somewhatdismaying prospect. Put a bit di erently: we want to forget as much of the past as possibleand
soreduceits burden. It is the cortrast betweenthis desire and the result of Eq. 4.7 that leads me to call
this the Old Country Lemma

Remark 2. Lemma5 estabhshesthe promised upper bound on the strength of patterns: viz., the strength

of the pattern is at mostH[S] H [S j SIFLpast, Where L pas is the least value of L suc that H [S j SI<
LH [S].

4.2 The Causal States

Here I'm going to de ne the causal states for stochastic processesyery much as| did in the last chapter
for memorylesstransducers. As was the casethere, the de nitions and constructions in this section use
conditional probabilities over and over again. That's ne solong as| condition on events of nonzero prob-
ability. Howewer, | needto condition on everts, suc as particular histories, whose probability generally is
zero. There are standard ways of dealing with this, but their technicalities tend to obscurethe main lines
of the argument. To keepthose lines as clear as possible, in this section | state my de nitions as though
classicalconditional probability wasadequate,reservingthe measure-theoretictreatment, and its limitations
and caveats, for Appendix B.3. The proofs are compatible with the proper use of conditional measures,but
they should be intelligible without them.

Denition 13 (A Pro cess's Causal States) The causalstates of a processare the memlers of the range
of the function that mapsfrom histories to setsof histories:

(s) fs  jP(S2Fjs=s)=P(S2Fjs=s):8F2 (S)s 25g; (4.10)

!
wher (S) is the collection of all measurable future events. Write the i causal state as ; and the set of
all causal statesas S; the correspnding random variable is denotel S, and its realization
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The cardinality and topology of S are unspecied. S can be nite, countably in nite, a continuum, a
Cantor set, or somethingstranger still. Examplesof theseare givenin Crutch eld (1994a)and Upper (1997);
seeespecially the examplesfor hidden Markov models given there.

Alternately and equivalertly, | could de ne an equivalencerelation such that two histories are equiv-
alert if and only if they have the sameconditional distribution of futures, and then de ne causalstates as
the equivalenceclassesgeneratedby . (In fact, this was the original approach (Crutch eld and Young

1989).) Either way, the divisions of this partition of S are made betweenregionsthat leave usin dierent
conditions of ignorance about the future.
This last statement suggestsanother, still equivalent, description of :

o 'L oL, Lo, 0 L1 Lo .
(s) = fsjP(S =s jS=s)=P(S =s jS=s);85 25 ;s 2S ;L2 "g: (411

Using this we can make the original de nition, Eq. 4.10, more intuitiv e by picturing a sequenceof partitions

of the space S of all histories in which ead new partition, induced using futures of length L + 1, is a
re nement of the previous one induced using L. At the coarsestlevel, the rst partition (L = 1) groups
together those histories that have the samedistribution for the very next obsenable. Theseclassesare then
subdivided using the distribution of the next two obsenables,then the next three, four, and soon. The limit
of this sequenceof partitions | the point at which every member of eact classhasthe samedistribution of

futures, of whatever length, as every other member of that class| is the partition of S induced by

Although they will not be of direct concernin the following, due to the time-asymptotic limits taken,
there are transient causal states in addition to those (recurrent) causal states de ned above in Eq. 4.10.
Roughly speaking, the transient causal states describe how a lengthening sequenceof obsenations allows
us to identify the recurrent causal states with increasing precision. SeeUpper (1997) and Feldman and
Crutch eld (1998a)for details on transient causal states.

Causal statesare a particular kind of e ectiv e state, and they have all the properties commonto e ectiv e
states (Section 4.1.2). In particular, ead causalstate S; has seweral structures attached:

1. The index i | the state's \name".

2. The set of histories that have brought the processto S;, f s 2 Sig.

! !

3. A conditional distribution over futures, denoted P(S jS;) and equalto P(Sjs); s 2 S;. Sincel refer
to this type of distribution frequertly and sinceit is the \shape of the future", I'll call it the state's
morph, following Crutch eld and Young (1989).

Ideally, eath of theseshould be denotedby a di erent symbol, and there should be distinct functions linking
ead of thesestructures to their causalstate. To keepthe growth of notation under cortrol, however, I'll be
tactically vagueabout thesedistinctions. Readersmay variously picture asmapping historiesto (i) simple
indices, (i) subsetsof histories, (iii) distributions over futures or (iv) orderedtriples of indices, subsets,and
morphs; or one may even leave uninterpreted, as preferred, without interfering with the developmert that
follows.

4.2.1 Morphs

Each causal state has a unique morph, i.e., no two causal states have the sameconditional distribution of
futures. This follows directly from De nition 13, and it is not true of e ectiv e states in general. Another
immediate consequencef that de nition is that, for any measurablefuture event F,
! , ! :
P(S2 FjS= (s)) = P(S2Fjs= s): (4.12)

(Again, this is not generally true of e ectiv e states.) This obsenation lets us prove a useful lemma about
!
the conditional independenceof the past S and the future S.
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Figure 4.2: A schematic represeriation of the partitioning of the set S of all histories into causal states
S 2S. WithinI ead causalstate all the individual histories s have the samemorph | the sameconditional
distribution P(S js) for future obsenables.

!
Lemma 6 The past and the future are independent, conditioning on the causal states: S ... S jS.

Proof. By Proposition 9 of ,IAppendix B.3, S and IS are independert given S if and only if, for any
measurableset F of futures, P(S2 Fj S= s;S= ) = P(S2FjS= ). SinceS = (S), it is automat-
ically true (Eq. B.6) that P(S2 Fj S= s:S= (s)) = P(S2 FjS= s). But then, P(S2 Fj 5= s) =
P(S2 FjS= (s)), sOP(S2FjS= s;S= )= P(S2FjS= ). QED,

Lemma 7 (Strict Homogeneit y of Causal States) A process'scausal states are the largest subsetsof
histories that are all strictly homaeneus with respect to futures of all lengths.

The proof is identical to that for memorylesstransducers (Lemma 3).

42.2 Causal State-to-State Transitions

The causal state at any given time and the next value of the obsened processtogether determine a new
causal state; this is proved shortly in Lemma 10. Thus, there is a natural relation of successioramong the
causalstates; recall the discussionof causality in Section2.3.4. Moreover, given the current causalstate, all

11
the possible next values of the obsened sequelnce(s ) have well de ned conditional probabilities. In fact,

by construction the ertire semi-in nite future (S) does. Thus, there is a well de ned probability Tij(s) of the
processgenerating the value s 2 A and going to causalstate §;, if it is in state S;.

De nition 14 (Causal Transitions) The labeled transition probability Tij(s) is the probability of making
the transition from state S; to state §; while emitting the symiml s 2 A:

11
T¥  P(S°=§; s =siS=S); (4.13)

where S is the current causalstate and S°its successor.Denote the sethij(S) :S2Ag by T.
Lemma 8 (T ransition Probabilities) Tij(s) is given by

T¥ = P(ss2sjs2s); (4.14)
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wherre S s is read as the semi-in nite sequene obtained by concatenating s 2 A onto the end of S.

Proof. It's enoughto show that the evernts concernedare really the same. That is, | want to show that

|1 n (0]
= §;s =5S=S = Ss25;8S2S

0
Now, that S = §; and S2 S; are the sameevwert is clear by construction. So,too, for S 2 §; and So= Si.
Sol can certainly assertthat

11 0 11
§°=§;S =5S=§ = S2§;S =5 825

0
The conjunction of the rst and third events implies that, for all s, if S= s,then S = sa, for somesymbol
a2 A. But the middle event ensuresthat a = s. Hence,

11

11
S°=S;s =s5S=S = Ss2S:;S =5;,S2S

But now the middle evert is redundant and can be dropped. Thus,
11 n (0]
S°=S;s =s5,S=S = Ss2S;8S2S ;

n o}
aspromised. Sincethe everts have the sameprobability, when conditioned on S, the everts Ss2 §; and

11
S°= ;s =s will yield the sameconditional probability.> QED.

Notice that Tij(;) = j , that is, the transition labeled by the null symbol ; is the identity.

423 -Machines

The combination of the function from histories to causal states with the labeled transition probabilities
Tij(s) is called the -machine of the process(Crutch eld 1994a;Crutch eld and Young 1989).

Denition 15 (An -Mac hine De ned) The -machine of a processis the ordered pair f ; Tg, where
is the causal state function and T is set of the transition matricesfor the statesde ned by .

Equivalently, you can denotean -machine by fS;Tg.
| promisedthat computational mecanicswould be \algebraic" badk in Section2.3.5,sohereis an explicit
connection with semi-grouptheory, and can you get more algebraic?

Lemma 9 ( -Mac hines Are Monoids) The algeba geneated by the -machinef ; Tgis a monoid| a
semi-group with an identity element.

Proof. SeeAppendix B.2.
Remark. Due to this, -machines can be interpreted as capturing a process'sgenerlized symmetries
Any subgroupsof an -machine's semi-groupare, in fact, symmetriesin the usual sense.

Lemma 10 ( -Mac hines Are Deterministic) For eachS; 2 S and eachs 2 A, there is at most one
S; 2 S suchthat, for every history s 2 §;, the history ss 2 §;. If sucha §; exists, then for all other

S 28, Ti(ks) = 0. If thereis no such§;, then Ti(ks) = Ofor all S¢ 2 S whatsever. That is, the -machine is
deterministic in the senseof De nition 509.

3Technically, they will yield versions of the same conditional probabilit y, i.e., they will agreewith probabilit y 1. SeeApp endix
B.3.
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0 0
Proof. The rst part of the lemma assertsthat for all s2 A and s;s 2 S, if (s) = (s), then

0
(ss) = (ss). (ssisjust another history and belongsto one or another causalstate.) I'll show that this
follows directly from causalequivalence.

0 0
Consider any pair of histories s; s suc that (s) = (s ), any singlesymbol s, and a (measurable)set
F of future everts. Let sF denote the set of futures obtained by pre xrng the symbol s to eadh future in F.

(sF is also measurable.) By causal equivalence, P(52 sFjsS= s) = P(52 SFJ S='s ) Now, 52 sF can

be decomposedinto the intersection of two everts: S = sand 812 F, where 81 is the random variable for
the future sequencejgnoring the next symbol. Therefore, we begin with the following equalities.

P(S2 sFj 5= s) P(S2 sFj 5= s)

11 ! 11 ! 0
P(S =5s;S12 FjsS=s) P(S =5;S12FjsS=s)

For any three random variables X ; Y; Z, the conditional probability P(Z 2 A; Y = yjX = x) can be factored
asP(Z 2 AjY = y; X = x)P(Y = yjX = x) (Eq. B.5) %

SP(S = 5 5= s)
S; 8= S)P(Isl_SjS_ s)

! 11
P(S12 FjS =s;S
! 11
= P(Si12 Fjs

From causal equivalence, the secondfactors on ead side of the equation are equal, so divide through for
11 11 0
them. (I addressthe casewhereP(S = sj S= s)= P(S =sj S= s )= 0 below.)

! 11 0
P(S12 FjS =s;S= s)
! 0
P(S2 FjS= s s)

! 11
P(S12 Fjs = s;S= s)
P(S2 Fj S= ss)

The last stepis justi ed by (conditional) stationarity. Sincethe setF of future everts is arbitrary , it follows
that ss s s. Consequetly, for eadh S; and eadh s, there is at most one S, such that T(S) > 0.

As remarked, causal equivalencetells us that P(s =sS=58) = P(s =s S=5 ). But they could
both be equal to zero, in which casewe can't divide through for them. But then, again as promised, it
follows that ewvery erntry in the transition matrix T(S) = 0,when S; = (s). Thus, the labeled transition
probabilities have the promised form. QED.

Remark 1. This use of \determinism" is entirely standard in automata theory (see Appendix A.4), but
obviously is slightly confusing. Many simple stochastic processessuch asMarkov chains, are deterministic in
this sense.Indeed, somecomputer sciertists are so shamelessasto say things like \sto chastic deterministic
nite automata”. Sadly, nothing can be done about this. Whenewer there is a possibility of confusion
betweendeterminism in the automata-theoretic sense,and determinism in the ordinary, physical sense,l'll
call the latter \non-sto chasticity" or \non-randomness".

Remark 2. Starting from a xed state, a given symbol always leadsto at most one single state. But there
can be seweral transitions from one state to another, ead labeledwith a di erent symbol.

11
Remark 3. Clearly, if Tij(s) > 0, then Tij(s) = P(S = sjS = Sj). In automata theory the disallowed

transitions (Tij(s) = 0) are sometimesexplicitly represerted and lead to a \reject" state indicating that the
particular history doesnot occur.

Lemma 11 ( -Mac hines Are Mark ovian) Given the causal state at time t 1, the causal state at time
t is independent of the causal state at earlier times.

4This assumesthe regularit y of the conditional probabilities, which is valid for our discrete processes.Again, seeApp endix
B.3.
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Proof. I'll start by shawing that, writing S, S° S%for the sequenceof causal states at three successie
times, S and S%are conditionally independert, given S°,
Let M be a (measurable) set of causal states.

11
P(sP2 Mjs®= %s= ) = P(s 2AjS°= %s= );

where A A is the set of all symbols that lead from ©°to some ® 2 M. This is a well-de ned and
measurableset, in virtue of Lemma 10 immediately preceding, which also guarantees (seeRemark 3 to the
Lemma) the equality of conditional probabilities | used. Invoking Lemma 7, conditioning on S hasno further
e ect oncewe've conditioned on S°,

11
P(s 2AjS°= 9
P(8%2 mMjs°®= 9

11
P(s 2Ajs°= %s=)

But (Proposition 9 and Eq. B.4) this is true if and only if conditional independenceholds. Now the lemma
follows by straightforward mathematical induction. QED.

Remark 1. This lemma strengthensthe claim that the causalstates are, in fact, the causally e cacious
states: given knowledge of the presern state, what has gone before makesno di erence. (Again, recall the
philosophical preliminaries of Section2.3.4.)

Remark 2. This result indicates that the causalstates, consideredas a process,de ne a Markov process.
Thus, causal states are a kind of generalization of hidden Markovian states. Of course, the class of -
machines is substartially richer (Crutch eld 1994a; Upper 1997) than what's normally assaiated with
Markov processegKemeny and Snell 1976;Kemeny, Snelland Knapp 1976)or even hidden Markov processes
(Elliot, Aggoun and Moore 1995). In fact, we've just shown that every conditionally stationary discrete
stochastic processhas a Markovian represeration!

De nition 16 ( -Mac hine Reconstruction) -Machine reconstruction is any procedure that given a pro-

$ $
cessP(S) (respectively an approximation of P(S)), producesthe process's -machinefS; T g (respectively an
approximation of fS; T g).

Given a mathematical description of a process,one can often calculate analytically its -machine. (For
example, seethe computational mechanics analysis of spin systemsin Feldman and Crutch eld 1998a.)

. . . . . . . $
There is also a wide range of algorithms which reconstruct -machines from empirical estimatesof P(S). |
give such an algorithm in the next chapter.

4.3 Optimalities and Uniqueness, or, Why Causal States Are the
Funk

I now show that: causal states are maximally accurate predictors of minimal statistical complexity; they
are unique in sharing both properties; and their state-to-state transitions are minimally stochastic. In other
words, they satisfy both of the constraints borrowed from Occam, and they are the only represenations
that do so. The overarching moral hereis that causalstatesand -machinesare the goalsin any learning or
modeling scheme. The argument is made by the time-honored meansof proving optimalit y theorems.
All the theorems, and someof the lemmas, will be establishedby comparing causal states, generatedby
, with other rival setsof states, generatedby other functions . In short, none of the rival states| none
of the other patterns | can out-perform the causalstates.
It is corveniert to recall somenotation before plunging in. Let S be the random variable for the current

11
causalstate, S 2 A the next \observable" we get from the original stochastic process,S° the next causal
state, R the current state accordingto , and R°the next -state. will stand for a particular value (causal
state) of S and a particular value of R. When | quantify over alternativ esto the causalstates, I'll quantify
overR.
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Figure 4.3: An alternative classR of states (delineated by dashedlines) that partition S overlaid on the
causalstates S (outlined by solid lines). Here, for example, S, contains parts of R1, Ry, R3 and R4. The
collection of all such alternativ e partitions form Occam's pool. Note again that the R; neednot be compact
nor simply connected,as drawn.

Theorem 5 (Causal States Are Prescient) (Crutcheld and Shalizi 1999)
ForallR andallL 2 *,

HIS jR] H[S jS]: (4.15)

1 L 1 L
Proof. We have already seenthat H[S jR] HI[S j S] (Lemma 5). But by construction (De nition
13),

1L L 1L 1L
P(S = s JS: S): P(S = s JS: (S)): (416)

1L 1L
Smce ertrop|es depend only on the probability distribution, H[S jS] = H[S j S] for every L. Thus,

H [S jR] H [S jS], for all L. QED.

Remark. That is to say, causal states are as good at predicting the future | are as prescient| as
complete histories. In this, they satisfy the rst requiremernt borrowed from Occam. Sincethe causalstates
are well de ned and since they can be systematically approximated, this shows that the upper bound on
the strength of patterns (De nition 12 and Lemma 5, Remark) can be reached. Intuitiv ely, the causalstates
achieve this because,unlike e ectiv e statesin general, they do not throw away any information about the

future which might be contained in S. Even more colloquially, to paraphrase Bateson's (1979) de nition
of information, the causal states record every di erence (about the past) that makesa di erence (to the
future). We can actually make this intuition quite precise,in an easycorollary to the theorem.

Corollary 2 (Causal States Are Sucien t Statistics) The causal statesS of a processare su cient
statistics for predicting it.

Proof. It follows from Theorem 5 and Eq. A.10 that, forall L 2 *,

1 L 1 L
I[s ;S]=1[s ;S]; (4.17)

where | wasde ned in Eg. A.10. Consequetly, by Proposition 6, the causal states are su cien t statistics
for futures of any length. QED.

All subsequeh results concernrival statesthat are as prescient asthe causalstates. Call these prescient
rivals, and denote a classof them by 23
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De nition 17 (Prescien t Riv als) Prescien rivals ® are statesthat are as predictive as the causal states;

viz.,forall L2 *,

1 L 1 L
H[s jR]= H[S jS]: (4.18)

Remark. Presciert rivals are alsosu cien t statistics.

Theorem 6 (Suciency and Determinism Imply Prescience) If R is a sucient statistic for the

11 11
next symhol, i.e., if P(S = ajR = (s))=P(S = ajS= (s)) foralla2 A, andif R is deterministic (in
the senseof De nition 59), then R is prescient. That is, deterministic states which get the distribution of
the next symtol right are prescient.

1L 1L
Proof: It will be enoughto show that, for any L, P(S jR) = P(S |S), since then the equality of
conditional entropies is obvious. | do this by induction; supposethat the equality of conditional probabilities
holds for all lengths of futures up to somelL, and considerfutures of length L + 1.

P(s = staR = (s)) = (4.19)
= P(SLu=aR= (s)S =s)P(s =s R = (s)
= P(Sta=aR= (s)s =sH)P(s =stis= (s)

where the secondline usesthe inductive hypothesis. Since we assumethe R states are deterministic, the
combination of the current e ectiv e state ( (s)) and the next L symbols (s-) xes a unique future e ectiv e

! 1L
state, namely (sst). Thus, by Proposition 8, Appendix B.3, weseethat P(S; 1= ajR = (s);S =s')=
11
P(s = ajR = (ss‘)). Substituting bad in,

P(s =staR= (s) = P(S =aR= (ss')P(S =siS= (s) (4.20)
= P(S = aS= (ss)P(S =siS= (s) (4.21)
= P(!SL+l: SL aJS = (S)) ; (422)

sothe induction is established. Since (by hypothesis)it holds for L = 1, it holds for all positive L. QED.
Remark. The causalstates satisfy the hypothesesof this proposition. Since,aswe shall see(Theorem 7),

the causal states are the minimal prescient states, they are alsothe minimal deterministic states which get

the distribution of the next symbol right. This is handy when doing -machine reconstruction (Chapter 5).

Lemma 12 (Renemen t Lemma) For all prescientrivals ® and for each b2 ®, thereisa 2 S and
a measure-0 subsethby, b, possiblyempty, suchthat bn b , Where n is set subtraction.

The proof is identical to that for the memorylesscase(Lemma 4). An alternativ e, more algebraic, proof
appearsin Appendix B.4. The Lemmais illustrated by the cortrast betweenFigures 4.4 and 4.3.

Theorem 7 (Causal States Are Minimal) (Crutch eld and Shalizi 1999) For all prescientrivals P,

C (®) cC(S): (4.23)
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Figure 4.4: A prescien rival partition ® must beare nement of the causal-statepartition almosteverywhee.

That is, almost all of each R; must cortained within someS;; the exceptions,if any, are a set of histories
of measure0. Here for instance S, contains the positive-measureparts of Fbg, Ii?4, and Fb5. One of these
rival states, say R, could have member-histories in any or all of the other causal states, provided the total

measureof such exceptional histories is zero. Cf. Figure 4.3.

The proof is identical to that in the memorylesscase(Theorem 2).

Remark 1. No rival pattern, which is as good at predicting the obsenations asthe causal states, is any
simpler than the causal states. (This is the theorem of Crutch eld and Young (1989).) Occam therefore
tells us that there is no reasonnot to usethe causalstates. The next theorem shows that causalstates are
uniquely optimal and sothat Occam's Razor all but forcesus to usethem.

!
Remark 2. Here it becomesimportant that we are trying to predict the whole of S and not just some
1 L

0
piece, S . Supposetwo histories s and s have the same conditional distribution for futures of lengths
up to L, but diering onesafter that. They would then belongto di erent causalstates. An -state that

1 L
mergedthose two causalstates, however, would have just asmuch ability to predict S asthe causalstates.
More, theseR -stateswould be simpler, in the sensethat the uncertainty in the current state would be lower.
Causal states are optimal, but for the hardestjob | that of predicting futures of all lengths.

Corollary 3 (Causal States Are Minimal Sucien t Statistics) The causal statesare minimal su -
cient statistics for predicting futuresof all lengths.

The proof is identical to that for the memorylesscase(Corollary 1).
I can now, as promised, de ne the statistical complexity of a process(Crutch eld 1994a;Crutch eld and
Young 1989).

De nition 18 (Statistical Complexit y of a Pro cess) The statistical complexity \C (O)" of a process
O is that of its causal states: C (O) C (S).

Due to the minimality of causal states, the statistical complexity measuresthe averageamount of his-
torical memory stored in the process. Sincewe can trivially elaborate internal states, while still generating
the same obsened process| arbitrarily complex sets of states can be presciert. If we didn't have the
minimalit y theorem, we couldn't talk about the complexity of the process,just that of various predictors of
it (Crutcheld 1992).

Theorem 8 (Causal States Are Unique) For all prescient rivals R, if C (F@) = C (S), then there

exists an invertible function between ® and S that almost always preservesequivalene of state: ® and
are the sameas S and , respectively, exept on a set of histories of measure 0.
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The proof is the sameas for the memorylesscase(Theorem 3); the sameremarks apply.

Theorem 9 ( -Mac hines Are Minimally Stochastic) (Crutch eld and Shalizi 1999) For all prescient
rivals 2,

HIRIR] H[SIS]; (4.24)

where S° and R are the next causal state of the processand the next "-state, respectively.

11 11
Proof. From Lemma 10, S%is xed by S and S together, thus H[SYS; S ] = 0 by Eq. A.23. Therefore,
from the chain rule for entropies Eq. A.17,

11 11
H[s jS] = H[S%s js]: (4.25)
There's no result like the Determinism Lemma 10for the rival states®, but ertropies are always non-negative:

11 1L 1L
H[RYR: s ] 0. Sincefor all L, H[S jR] = H[S jS] by the de nition (De nition 17) of presciert rivals,
11 11
H[S jlj?] = H[S jS]. Now apply the chain rule again,

H[F‘?O;!sljrb] = H[!sljrb]+H[#?%!sl;#@] (4.26)
HIS jR] 4.27)

= H[!SljS] (4.28)

= H[S® S jS] (4.29)

= H[SYS]+ H[S S : (4.30)

To go from Eqg. 4.28t0 Eq. 4.29 useEq. 4.25,and in the last step usethe chain rule oncemore.
Using the chain rule one last time, with feeling, we have

H[Ii?o;!sljlj?] = H[RIR] + H[!SljF'?O; R] : (4.31)
Putting theseexpansions,Eqgs. 4.30and 4.31, together we get
HIRGR] + H[S jREB]  H[SYS]+ H([S jS°S] (4.32)
11 11
HRIR] HI[SYS] H[S jS%S] H[S jR%R]:

From Lemma 12, we know that S = g(li?), so there is another function g° from ordered pairs of -states to
ordered pairs of causalstates: (S%S) = gqR% R). Therefore, Eq. A.25 implies

11 11
H[s jS%S] H[s jR%R]: (4.33)
And so, we have that

11 11
H[S jS%S] HI[s jR%R] 0
H[RIR] H[SYS] 0
H[RYR] H[SYS] : (4.34)
QED.
Remark. What this theorem says is that there is no more uncertainty in transitions betweencausalstates,
than there isin the transitions betweenany other kind of presciert e ectiv e states. In other words, the causal

states approach as closelyto perfect determinism | in the usual physical, nhon-computation-theoretic sense
| asany rival that is asgood at predicting the future.
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4.4 Bounds

In this section | develop bounds between measuresof structural complexity and ertropy derived from -
machines and those from ergodic and information theories, which are perhapsmore familiar.

De nition 19 (Excess Entrop y) The exessentropy E of a processis the mutual information between its
semi-in nite past and its semi-in nite future:

E I[s;S]: (4.35)

The excessertropy is a frequenrtly-used measureof the complexity of stochastic processesand appears
under a variety of names;e.g., \predictiv e information”, \stored information”, \e ectiv e measurecomplex-
ity", and soon (Crutch eld and Padkard 1983; Shav 1984; Grassherger 1986; Lindgren and Nordahl 1988;
Li 1991;Arnold 1996;Bialek and Tishby 1999). E measuresthe amount of apparent information stored in
the obsened behavior about the past. But E is not, in general, the amount of memory that the process
storesinternal ly about its past; that's C .

Theorem 10 (The Bounds of Excess) The statistical complexity C boundsthe exessentropy E:

E C ; (436)
with equality if and only if H[Sj !S] = 0.
Proof. E = I[!s; S]=H [!S] H [!sj S] and, by the construction of causalstates, H [!sj S]=H [!S iS], so

E=H[s] H[sS]=I[s;S]: (4.37)

Thus, sincethe mutual information betweentwo variablesis never larger tr}an the self-information of either
one of them (Eqg. A.20), E H[S]= C , with equality if and only if H[Sj S] = 0. QED.

! L L !
Remark 1. Note that | invoked H[S], not H[S ], but only while subtracting o quartities likeH[S | S].
1 L
We needn't Worry, therefore about the existenceof a nite L ! 1 limit for H[S ], just that of a nite

L! 1 limit forl [S S]and | [S ; S]. There are many elemenary cases(e.g., the fair coin process)where
the latter limits exist, while the former do not. (SeeGray (1990) for details on how to construct suc a
mutual information with full rigor.)

Remark 2. At rst glance,it is tempting to seeE as the amount of information stored in a process.
As Theorem 10 shows, this temptation should be resisted. E is only a lower bound on the true amount of
information the processstores about its history, namely C . You can, howewer, say that E measuresthe
apparent information in the process,sinceit is de ned directly in terms of obsened sequencesand not in
terms of hidden, intrinsic states,asC is.

Remark 3. Perhapsanother way to describe what E measuresis to note that, by its implicit assumption
of block-Mark ovian structure, it takessequence-bloks as states. But even for the classof block-Mark ovian
sources,for which such an assumption is appropriate, excessentropy and statistical complexity measure
di erent kinds of information storage. Feldman and Crutch eld (1998a)and Crutch eld and Feldman (1997)
showvedthat in the caseof one-dimensionalrange-R spin systems,or any other block-Mark ovian sourcewhere
block con gurations are isomorphic to causal states,

C =E+Rh : (4.38)

for nite R. Only for zero-eriropy-rate block-Mark ovian sourceswill the excessertropy, a quartit y estimated
directly from sequenceblocks, equal the statistical complexity, the amount of memory stored in the process.
Examples of sudh sourcesinclude periodic processesfor which C = E = log, p, where p is the period.
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Corollary 4 For all prescientrivals P,

E H[R]: (4.39)

Proof. This follows directly from Theorem 7, sinceH [Ii?] C . QED.
Lemma 13 (Conditioning Does Not Aect Entrop y Rate) For all prescientrivals P,
! 1
h[S] = h[S jR] ; (4.40)

where the entropy rate h[S] and the conditional entropy rate h[S jli?] were de ned in Eg. 4.4 and Eq. 4.5,
respectively.

Proof. From Theorem 10 and its Corollary 4,

im H[!SL] H[!SLin?] lim HIR] ; (4.41)
or,
H[!SL] H[!SL'Fb] H [R]
. J ; .
Llillm L Lllllm L (4.42)
1L 1L
Since,by Eq. A.15,H[S | H[S jR] 0,
his] hisj®]=0: (4.43)

QED.
Remark. Forcing the processinto a certain state ® = bis akin to applying a cortroller, once. But in the
1L

in nite-en tropy case,H[S ]! L1 1, which is the generalone, the future could contain (or consistof) an
in nite sequenceof disturbances. In the face of this \grand disturbance”, the e ects of the nite control are
simply washedout. .

Another way of viewing this is to re ect on the fact that h[S] accourts for the e ects of all the dependen-
ciesbetweenall the parts of the ertire semi-in nite future. This, owing to the time-translation invariance of
(conditional) stationarity, is equivalent to taking accourt of all the dependenciedn the ertire process,nclud-

|
ing those between past and future. But these are what is captured by h[S jﬂ?]. It is not that conditioning
on R fails to reduce our uncertainty about the future; it doesso, for all nite times, and conditioning on S
achievesthe maximum possiblereduction in uncertainty. Rather, the lemma assertsthat such conditioning
cannot a ect the asymptotic rate at which such uncertainty grows with time.

Theorem 11 (Control Theorem) Given a class® of prescientrivals,
H[S] h[sjR] C ; (4.44)
where H [S] is the entropy of a single symiol from the observablestochastic process.

Proof. As is well known (Cover and Thomas 1991, Theorem 4.2.1, p. 64), for any stationary stochastic
process,
[s] L
_H[s]_ . ! _
LI!|lm — = ngllm H[S.js ]: (4.45)
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!
Moreover, the limits always exist. Up to this point, | de ned h[S] in the manner of the left-hand side; recall
Eq. 4.4. It's now more corveniert to usethe right-hand side.
From the de nition of conditional entropy,

1 L1 L1
H[S jS 1+ H[s ]

L 1 1 1
H[S jS]1+H[S]: (4.46)

L
H[S ]

Sowe can expressthe entropy of the last obsenable the processgeneratedbefore the presert as

1 L L 1 1
H[S] = H[S ] H[S jS] (4.47)
1 L 1 L 1 L 1 1
= H[sjs ]+H[s 1 H[s js] (4.48)
1 L 1 L 1 1
= H[sjs 1+I[s ;s]: (4.49)

L
To go from Eq. 4.47to Eq. 4.48, substitute the rst RHS of Eq. 4.46for H[S ].
Takingthe L'! 1 limit hasno e ect on the LHS,

1 1 L 1 L 1 1
HIs]= Im HIsjs ]+I[s :s] : (4.50)

1 L1
Sincethe processis stationary, we can move the rst term in the limit forward to H[S_ jS ]. This limit is
| 1 11
h[S], by Eq. 4.45. Furthermore, becauseof stationarity, H[S ] = H[S ]= HJ[S]. Shifting the entropy rate
!
h[S] to the LHS of Eq. 4.50 and appealing to time-translation once again,

H[S] h[!S] = im I[sL l;sl] (4.51)
= 1[s:S ] (4.52)

= H[s] HIS]s] (4.53)

= H[s] HIsis] (4.54)

= I[s:s] (4.55)

H[S]=C ; (4.56)

where the last inequality comesfrom Eq. A.20. QED.

Remark 1. Thinking of the cortrolling variable asthe causalstate, this is a limitation on the cortroller's
ability to reducethe entropy rate.

Remark 2. This is the only result sofar wherethe di erence betweenthe nite- L and the in nite- L cases
is important. For the analogousresult in the nite case,seeAppendix B.5, Theorem 25.

Remarlk 3. By applying Theorem 7 and Lemma 13, we could go from the theorem as it stands to

H[S] h[s jli?] H [Ij?]. This has a pleasing appearanceof symmetry to it, but is actually a weaker limit
on the strength of the pattern or, equivalertly, on the amourt of cortrol that xing the causalstate (or one
of its rivals) can exert.

45 The Physical Meaning of Causal States

All this has beenvery abstract, and not particularly \physical." This is the price for a generalmethod, one
which is not tied to particular assumptionsabout the physical character of the processego which it can be
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applied. That said, nothing prevents us from applying the formalism to the kind of things we cameto know
and love while reading Landau and Lifshitz (1980). In particular, the computational medanicsof time series
can be applied to the time ewolution of ordinary statistical-mechanical systems,and the result helps clarify
the meaning of causalstates| and the meaning of macrostatesin statistical mecanics?®

Consider a collection of physical particles, obeying the usual laws of classical mecanics with some
Hamiltonian or other, and described by an ensenble distribution in the microscopic phasespace . The
ensenble is not necessarilyany of the usual equilibrium ensenbles, and we don't supposethat the system
is anywhere near equilibrium or a steady state. Now think of your favorite macroscopicvariable S. The
value of S will be a function of where the system happensto be in  when you make your measuremen
i.e., S = s(x), x2 . The macrovariable S inducesa partition on the phasespace ; call the partition A.
Conversely a (measurable) partition of correspondsto somemacroscopicvariable. If you measureseeral
macrovariables S;R ::: simultaneously (which is always possible, classically), the induced partition of is
simply the product of the partitions of the individual variables, A B :::. We may regard this joint
variable as simply yet another macroscopicvariable, which could be measureddirectly with the appropriate
instrument. So, without loss of generality, let's just think about a single macrovariable. With only minor
loss of generality, moreover, let's assumethat it's discrete, and measuredat discrete times.® Restricting
ourselesto discrete times allows us to write the time-evolution of the phasespacein the form of a discrete
map, T : 7!

Histories of measuremets of this macrovariable induce yet another partition of , in the following manner.
Each obsenation value s correspondsto a set Ag of points in phasespace. The sequenceof measuremets
ss¥ thus correspondsto the set Asso TAg\ Ago, Where T is the phase-spacanapping operator. Sincethe
setsAg form a partition, it's easyto seethat the setsAgso form a re nement of that partition. An exercise
in mathematical induction extendsthis to any sequenceof measuremets of courtable length. The partition
induced by histories of length L + 1 is always a re nement of histories of length L. Sofar this is an ertirely
standard construction of symbolic dynamics for a statistical-mechanical system, as found in, e.g., Dorfman
(1998). Normally, to get useful results from such a construction, the initial partition must be a Markov
or generating partition, or otherwise pretty special. Here we have just started with whatever obsenable
partition we liked.

Now comesthe trick. By making the time ewolution of the statistical mecanical system look like
an ordinary discrete stochastic process,we have brought it within the range of application of the theory
deweloped in this chapter. We can construct causalstates for it, and those states have three key properties:
they are optimal predictors of the original sequenceof measuremets; they are Markovian; and they are the

minimal set of states of which both those things are true. But S is a partition of S, which in turn is a
partition of . Therefore S inducesa partition on (which is coarser,generally considerably coarser,than

that induced by S). The causal state, therefore, correspondsto a measurablemacroscopicvariable, call it
C, which is the coarsestone that can both predict the macrovariable(s) with which we started, and whose
own dynamics are Markovian. But theseare the properties of a\good" set of macroscopicvariables, of ones
which de ne a useful macrostate: they are dynamically autonomous(Mark ovian), the preser value of them
predicts future behavior optimally, and nothing simpler doesthe job.” Thermodynamic macrostates, then,
are causal states, and conversely causal states are a kind of generalizedmacrostate, with the value of the
causal state acting as a generalizedorder parameter.

Put slightly dierently, what we have doneis construct a partition of the phasespace which is Marko-

5This section derives from Shalizi and Moore (2001). That in turn is based on earlier work connecting statistical and
computational mechanics (Crutc held 1992; Crutc h eld 1994a; Crutch eld and Feldman 1997; Feldman and Crutc held 1998a;
Feldman 1998; Crutc held and Shalizi 1999). Cf. Lloyd and Pagels (1988).

6The limited accuracy and precision of all instrumen ts arguably imp osessomething lik e discretization on all our measuremerts
anyway, but that's a bit of a tricky point, which I'd like to evade.

7An apparent exception is found in systems, lik e glasses(Zallen 1983) and spin glasses(Fischer and Hertz 1988), where there
are memory e ects over very long time scales. These are due, however, to the very large number of metastable states in these
systems, transitions between which are slow. The memory e ects can be eliminated by intro ducing the occupations of these
metastable states as order parameters | by adding a macroscopic number of degreesof freedom, as Fischer and Hertz put it.
For more on this point, see Shalizi and Moore (2001).
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vian, starting from an arbitrary obsenational partition. Each causal state thus corresponds not only to a
history of obsenations, but alsoto a region in phasespace. (Perry and Binder (1999) have mapped these
regions, albeit for an unusually simple phase space.) Even better, since the causal states form a Markov
chain, the distribution of sequence®f causalstatesis a Gibbs distribution. & Yet we haven't had to assume
that our systemis in equilibrium, or in a steady state, or has any particular kind of ensenble (such as a
maximum ertropy ensenble). This is, perhaps, part of the justi cation for why the assumption of Gibbs
distributions is often fruitful in non-equilibrium statistical mecanics?

Of course, this argumert is very, very far from a complete story for macrostatesand macrovariables. It
says nothing, for instance, about why extensivequartities are good macrovariables. Nor doesit say anything
about why macrovariables are, soto speak, recyclable, why pressure(say) is a good macrovariable for many
systemswith little in common microscopically The explanation of such regularities presumably is to be
found, not in the very generalstatistical properties captured by computational mechanics, but in the more
detailed dynamical properties studied by ergadic theory (Ruelle 1989; Dorfman 1998; Gaspard 1998; Ruelle
1999), and to someextent in the theory of large deviations (Ellis 1985; Ellis 1999).

8The proof that Mark ovianit y implies a Gibbs measure over sequences,and vice versa, while fairly straightforw ard, is outside
the scope of this book. SeeGuttorp (1995) for an elemertary proof.
9Thanks to Erik van Nimwegen for this observation.
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Chapter 5

A Mac hine Reconstruction Algorithm

Those who are good at archery learnt from the bow and not from Yi the Archer. Those who
know how to manageboats learnt from the boats and not from Wo. Those who can think learnt
from themselwes, and not from the Sages.

[Anon ymous (T'ang Dynasty).

A natural and appropriate reaction to the theory dewveloped in Chapters 3 and 4 is that it may be all
well and good as a pure mathematical construction, but that it will only matter if it can be implemented, if
it canbe put into practice. This is asit should be. Considerthe di erence in fate betweentwo similar ideas
proposedat roughly the sametime, namely attractor reconstruction, a.k.a. \geometry from a time series"
(Padkard, Crutch eld, Farmer and Shawv 1980), and the Turing-machine test for the presenceof deterministic
structure in atime series(Takens1983). The former has becomea fundamental tool of nonlinear dynamics,
not just becauseit is mathematically important, but becauseit can be reducedto practice. The latter is
almost completely ignored, becauseit is simply impossibleto implemert. Implementation separatesNeat
Ideasfrom Real Tools.

This has beenrecognizedsincethe rst days of computational mecdanics, when an algorithm was de-
veloped for -machine reconstruction (Crutch eld and Young 1989; Crutch eld and Young 1990), which
mergeddistinct histories together into states when their morphs seemedclose”. (I will briey describe this
algorithm, and related but distinct approacdhes,in Section 5.1.) This has since becomethe standard one,
to the point where somecon ate it with computational mecanics as such. People have usedthe algorithm
on discrete maps (Crutch eld and Young 1990), on sequencedrom cellular automata (Hanson 1993) and
on one-dimensionalspin systems(Feldman and Crutch eld 1998a;Feldman 1998). It has even beenapplied
to experimental data, from the dripping faucet system (Goncalves, Pinto, Sartorelli and de Oliveira 1998),
from stochastic resonanceexperiments (Witt, Neiman and Kurths 1997), and from turbulent geoplysical
uid ows (Palmer, Fairall and Brewer 2000; Nicholas Watkins, personal communication, 2000).

While the Crutch eld-Y oung algorithm has considerableintuitiv e appeal, and has a record of successn
practice, it is not altogether satisfactory. We are essetially dealing with a problem in statistical inference,
and its statistical justi cation isweak. Becauset works by merging, it e ectiv ely makesthe most complicated
model of the processit can. This grossrejection of Occam's Razor is not only ideologically repugnart, but
hard to analyze statistically. Finally, the algorithm does not make use of any of the known properties of
causalstatesand -machinesto guide the seard, e.g., though the causalstates are deterministic, the states
it returns often aren't.

This chapter preseris a new algorithm which improves on the old Crutch eld-Y oung algorithm in all
theserespects. It operateson the opposite principle, nhamely creating or splitting o new states only when
absolutely forced to. | specify the new algorithm, prove its asymptotic reliabilit y or corvergenceon the true
states, and describe its successfuffunction. | then speculate about how the rate of convergencevaries with
characteristics of the process,such as its statistical complexity C , and make hand-wavy argumerts for a
particular form of dependence.
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Erik van Nimwegen originally suggestedthe core of this idea, inspired by Bussemaler, Li and Siggia
(2000), which, however, looks at \w ords" in biosequencedata and natural-language corpora rather than
causal states. (Thanks to Erik as well for providing a preprint of that paper.) The dewelopmen of this
algorithm is joint work with Kristina Klinkner, and a more extensive report on it can be had in Klinkner
and Shalizi (2001).

5.1 Reconstructing States by Merging

Previous proceduresfor reconstructing the states operate by using what one might call compressionor
merging. The default is that ead distinct history encourtered in the data is a distinct causalstate. Histories
are then merged into states on the basis of equality of conditional probabilities of futures, or at least of
closenesof those probabilities.

The standard Crutch eld-Y oung merging algorithm is a tree method. Assumethe processtakesvalues
from an alphabet A of sizek. Then the algorithm is to build a k-ary tree of somepre-setdepth L, wherepaths
through the tree correspond to sequence®f obsenations of length L, obtained by sliding a window through
the data stream (or streams, if there are seweral). If L = 4, say, and the sequenceabbais encourtered, the
path in the tree will start at the root node, take the edgelabeled a to a new node, then take the outgoing
edgelabeled b to a third node, then the edgelabeled b from that, and nally the edgelabeleda to a fth
node, which is a leaf. An edgesof the tree is labeled, not just with a symbol, but also with the number of
times that edgehas beentraversedin scanningthrough the data stream. Call the number on the a; edge
going out of node n, (ajn), and the total number of sequencesve have entered into the tree N..

The traversal-courts are corverted into empirical conditional probabilities by simple division:

N - (aijn)

Pr@in = P

(We write Py to remind ourselvesthat the probability estimate is a function of the number of data points
N.) Thus attached to ead non-leaf node is an empirical conditional distribution for the next symbol. If n
has descendars to depth K, then it has (by implication) a conditional distribution for futures of length K.

The merging procedureis now as follows. Consider all nodeswith sub-treesof depth L=2. Take any two
of them. If all the empirical probabilities attached to the edgesin their sub-treesare within someconstart
of one another, then the two nodesare equivalent, and they (and their descendats) should be mergedwith
one another. The new node for the root will have incoming links from both the parents of the old nodes.
This procedureis to be repeated until no further merging is possible!

All other methods for causalstate reconstruction currently in use are also basedon merging. Take, for
instance, the \top ological" or \mo dal" merging procedure of Perry and Binder (1999). They considerthe
relationship between histories and futures, both (in the implemertation) of length L. Two histories are
assignedto the samestate if the setsof futures which can succeedthem are identical.? The distribution over
those futures is then estimated for eat state, not for eac history.

5.1.1 What's Wrong with Merging Metho ds?

The basic problem with all merging methods is that their default is to treat ead history asbelongingto its

own causal state, creating larger causalstates only when they must. The implicit null model of the process
is thus the most complicated onethat can be devised,giventhe length of histories available to the algorithm.

This seemsperverse,especially given computational mechanics's strong commitment to Occam's Razor and

the like. Worse, it makesit very hard, if not impossible,to apply standard tools of statistical inferenceto

the estimation procedure.

1Since the criterion for merging is not a true equivalence relation (it isn't transitiv e), the order in which states are examined
for merging matters, and various tric ks exist for dealing with this. See,e.g., Hanson (1993).
2This is an equivalence relation, but it isn't causal equivalence.



44

For instance: what is a reasonablevalue of ? Clearly, asthe amount of data increases,and the Law of
Large Numbers makes empirical probabilities cornvergeto true probabilities, should grow smaller. But it
is grossly impractical to calculate what should be, since the null model itself is so complicated. (Current
best practice is to pick asthough the processwere an 11D multinomial, which is just the opposite of the
algorithm's default estimate!) Furthermore, using the same for every pair of nodesis a bad idea, sinceone
node might have been sampled much lessoften than the other, and so the conditional probabilities in its
sub-tree are lessaccurate than thosein the other.

The results summarized in Chapter 4 tell us a lot about what the causal states are like; for instance,
they are deterministic, they are Markovian, etc. No existing reconstruction algorithm makes use of this
information to guide its seard. The Crutch eld-Y oung algorithm frequertly returns a non-deterministic
set of states, for instance, which can't possibly be the true causalstates® This sort of behavior should be
discouraged.

None of this is to say that merging algorithms do not work in practice, sincethey have. It's even clear
that, given enough data, and a small enough , if the true causal states can be identied on the basis of
nite histories, the Crutch eld-Y oung algorithm will identify them. Still, their limitations and de ciencies
are deeply unsatisfying.

5.2 Reconstructing States by Splitting
5.2.1 Description of the Metho d

We assumewe are given a sequenceof length N over the nite alphabet A.# We wish to calculate from this
a classof states, $. Each member ~ of S is a set of histories, or suxes to histories. The function » maps
a nite history s to that ~ containing the longest sequenceerminating s, i.e., to the state containing the
longestsu x of s.

11 11
Each ~ 2 S, is assaiated with a distribution for the next obsenable S , i.e., P(S = aj$ = *) is de ned
for each a2 A and each . We will call this conditional distribution the morph of the state.
The null hypothesisis that the processis Markovian on the basisof the statesin S,

L

11 L 1
P(sjs =as )

P(s’is =s b (5.1)
P(s 8= NSt 1) (5.2)

We apply a standard statistical test to this hypothesis, e.g. the Kolmogorov-Smirnov test®, at somespec-
i ed signi cance level. (If we usethe KS test, we can actually avoid estimating the conditional distribution,
and just usethe empirical frequencycourts.) This cortrols directly the probability of type | error (rejecting
the null whenit is true), and generally the KS test has higher power (lower probability of type Il error, of
accepting the null when it's false) than other, similar tests, such as 2 (Rayner and Best 1989). We modify
$ only when the null is rejected.

. Initialization. SetL = 0, and S = f”og, where %o = ;g , i.e., A contains only the null sequence.We
assumethat the null sequencecan be regardedas a sux of any history, so that initially all histories are
mapped to ~g. The morph of ~g is de ned by

P(S =ad=7) = P(S =a):

31t is sometimes claimed (Jay Palmer, personal communication) that the non-determinism is due to non-stationarit y in the
data stream. While a non-stationary source can causethe Crutc h eld-Y oung algorithm to return non-deterministic states, the
algorithm quit capable of doing this when the source is IID.

4The modication to handle multiple sequences,multiple samples from the same process, is discussed at the end of this
section.

5SeePress, Teukolsky, Vetterling and Flannery (1992, sec.14.3) and Hollander and Wolfe (1999, pp. 178{187) for details of
this test.
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sothe initial model is that the processis a sequenceof independert, identically-distributed random variables.

Il. Homaogeneity. We rst generate states whose members are homogeneougDe nition 6) for the next
symbol | whoseparts all have the samemorph. Or rather, we generate states whose members have no
signi c ant di erences in their morphs.

11
1. For each ~ 2 S, calculate Py (S jS= 7) | the \distribution" of that state.

L 11 L L
(8) For each sequences 2 *, estimate P(S = aS = s ). The naive maximum-likelihood
estimate,
L L 11

|5N(!Sl=ajSL= SL) _ (S =S ;S :a);

L L
(s =s)
is simple and well-adapted to the later part of the procedure,but other estimators could be used.
L
This distribution is the morph of s

L
(b) The morph of ~ is the weighted average of the morphs of the sequencess 2 *, with weights

L L
proportional to (S = s ).
(c) For the special casewhen L = 0 and the only history is the null sequenceseeabove.

L
2. Foreach » 2 S, test the null (Mark ov) hypothesis. For eac length L sequences 2 ~ andeah a2 A,
L L

generatethe sux oflengthL + 1as | achildsux of s

L
(a) Estimate the morph of as by the samemethod as usedabove.
L
(b) Testwhether the morphs of as and ~ dier signi cantly.

L L
(c) If they do, then it is worthwhile to distinguish as from s , and from all the other histories in
N

i. Test whether there are any states S whose morphs do not dier signicantly from that of

L L
as . If so,add as to the state whosemorph it matches most closely as measuredby the
scoreof the signi cance test®.

L
ii. If the morph of as is signicantly dierent from the morphs of all existing states, create a
new state and add as to it, with its morph.

L
iii. Generateall the other child suxes of s , and assignthem to the states whosemorphs they
match most closely

L
iv. Delete s (and any of its ancestors) from ~.
v. Recalculatethe morphs of states from which sequence$ave beenadded or deleted.
L L
(d) If the morph of as doesnot dier signicantly from that of #, addas to .

3. Incremert L by one.
4. Repeat steps 1{3 until we reach somepreset maximum length L max .

At the end of this procedure, no history is in a state whosemorph is signi cantly di erent from its own.
Moreover, every state's morph is signi cantly dierent from ewvery other state's morph. The causal states
have this property, but they are also deterministic, and we needanother procedureto \determinize" S.

I11. Determinization.

L
6 Actually , which of these states as is assigned to is irrelevant in the limit where N ! 1 ; but this choice is convenient
and plausible.

L
71f any of the ancestors of s are around as suxes, then they must also be in ~.
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1. For each state * 2 S

(@) Foreah a2 A

i. Calculate /(sa) for all s 2 ~| thesearethe suaessorstateson a of the histories.
ii. If there is only one successoistate on a, go on to the next a.
ii. If therearen 2 successosstateson a, createn 1 new states, moving histories into them
from " sothat all histories in the new states and » now have the samesuccessowon a. Go
badck to 1.

(b) If every history s in » hasthe samesuccessowon a, for every a, go on to the next state.

2. For eadh state, output the list of sequencesn the state, the conditional probability for ead symbol
a2 A, and the successowon a.

It is clearthat this procedurewill terminate (in the worst case,when every history is assignedto its own
state), and that when it terminates, S will be deterministic. Moreover, becausewe create the deterministic
states by splitting the homogeneousstates, the deterministic statesremain homogeneous.

Now, by Theorem 6, the causalstates are the minimal states which have a homogeneoudistribution for
the next symbol and are deterministic. If we had accessto the exact conditional distributions, therefore,
and did not have to estimate the morphs, this procedurewould return the causalstates. Instead it returns
a set of stateswhich in somesensecannot be signi cantly distinguished from them.

5.2.2 Reliabilit y of Reconstruction

The road to wisdom? | Well, it's plain

and simple to express:

Err

and err

and err again

but less

and less

and less.

| Piet Hein (1966, p. 34)

We wish to show that the algorithm we have given will, like the Crutch eld-Y oung algorithm, return the
correct causal states, if L. is suciently large,and N ! 1 . To be more precise,assumethat L na iS

large enoughthat sLmax is su cien t to placethe systemin the correct causalstate. We wish to show that
the probability that S 6 S goesto zeroasN ! 1 . For de niteness, we'll assumehere that the algorithm
employs the KS test, though nothing vital hingeson that.

Nothing can go wrong in procedurel.

0
Twoo sorts of error are possiblein procedurell. A history s can be put in a classwith s, even th(())ugh
s6 s ; or two histories which are causally equivalent could be assignedto dierent states, s s but
0
(s) 6 /(s ). Can we show that theseevents becomevanishingly rareasN ! 1 ?

11
Each time we see s, the next symbol S is independert of what the next symbol is every other time we
see s; this is what it meansfor L, to be large enoughto make the processMarkovian. Henceour naive

11
maximum-lik elihood estimate of the morph, Py (S j S= s), is the empirical meanof 11D random variables,

11
and by the strong law of large numbers, convergeson P(S j S= s) with probability 1 asN ! 1 8 If

11
8For probabilists. Tednically, the strong law just tells us this happens for each realization of S separately. Since there are
only a nite number of them, however, it still is true for them all jointly, and so for the distribution.
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11 11
s so, then P(S jS= s)=P(S j S= so). Therefore,8a 2 A
11 . 11 . 0
Pu(s =as=s) Puy(s =ajs=s) ! 0

asN ! 0, at leastin probability. Therefore the KS test statistic for the di erence betweenthe morphs of s

0
and s will corvergeto zero, and the probability that two histories which belong to the samecausal state
will be assignedto di erent states goesto zero.

0 11 11 0
If s6 s, then there are two possibilities. (1) 9a2 A suc that P(S = aj S= s) 6 P(S = aj S= s).
Call the di erence betweenthose probabilities p. Then

Bu(S =ajs=s) By(s =ajs=s) | p

0
in probability, and sothe KS test will separate s and s . (2) The morphs are the same,but 9sX 2 AK suc
11 11 0 0
that P(S j S= ssf) 6 P(S j S= s sX). Then (by the previous argumert) ss and s sX will belongto
0

di erent states, at leastin the limit, and so, recursively, s and s will be separatedby procedurelll.

Nothing can go wrong in procedurelll.

ThereforeP($6 S)! OasN ! 1.

In the terminology of mathematical statistics (Cramer 1945), we have just shown that the algorithm is
a consistent estimator of the causalstates. In that of machine learning theory (Kearns and Vazirani 1994;
Vapnik 2000), it is probably approximately correct. In that of the philosophy of science(Glymour 1992;
Spirtes, Glymour and Sceines2001;Kelly 1996)it is reliable

5.2.3 Adv antages of the Metho d

The main advantages of this algorithm are, naturally enough, the opposites of what | said were the disad-
vantagesof the Crutch eld-Y oung algorithm.

The implicit null model is that the processis 1D, which is the simplest model we could use. We add states
only when the current model is de nitely rejected, and so intro duce complications (and complexity) only as
the data demandthem. By using a proper hypothesistest, instead of a simple cut-o asin the Crutch eld-
Young algorithm, we takein to accourt the e ects of samplesizeand the non-trivial form of the distribution.
Adjusting the signi cance level directly cortrols the rate at which the algorithm createsspurious states. It
also indicates our fear of over- tting, or our willingnessto acceptadditional complexity in return for better
ts to the data. Strict delit y to Occam not only lets us bask in the warmth of methodological virtue, it
givesus a better handle on what our program is doing.

The algorithm makesfull use of the known properties of the causal states| their homogeneiy, their
determinism, their Markovianity. This greatly reducesthe spaceof state classesn which the algorithm must
seard, and so should signi cantly improve the rate of convergence(seebelow). By using homogeneity and
determinism, we never have to look at futures of length greater than one, which is good both for the time
it takesthe algorithm to run and for the accuracy of the results. By keepingewverything deterministic and
Markovian, it should be possibleto analytically calculate error rates (size, power, and even se\erity (Mayo
1996; Mayo and Spanos2000)), at leastin the asymptotic regime, by adapting results in Billingsley (1961).

5.2.3.1 Problems with the Metho d

We have no assurancethat the set of states produced by this algorithm will be minimal. Currently there is
no penalty for making spurious distinctions which do not impair prediction. Becausewe can only use nite

guantities of data, it is always possiblethat, simply through bad luck and sampling errors, two histories
which belong in the same causal state will have signi cantly di erent sample-distributions of futures, and
be split. This might be avoided by lowering the signi cance level in the KS test, and so splitting only when
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the di erence in the conditional distribution of futures is larger, but past a certain point, this will tend to
lump together states which should be split | the old trade-o betweenfalse positivesand false negativesin
statistics.

We needto x a value for L s . Normally, we imagine that this should be aslarge astime and memory
constraints will allow | if there isn't enough data to go badc that far, the signi cance test will handle
it automatically. It is possible, however, to independertly test for the Markov order of the data stream
(Billingsley 1961;van der Heyden, Diks, Hoekstra and DeGoede 1998), and so place bounds on L pay, if we
want to.

The algorithm returns a single state class. But for nite N, there are generally lots of others which
would do at least as well on all the tests. The one the algorithm returns depends on such details of its
innards as the order in which it generateschild suxes. Rather than providing a point estimate of the
causal states, it would be nice if it gave us all the adequatestate classesall the oneswhoseperformanceis
over a certain threshold; this would be a kind of con dence region for the causalstates. Sincedoing that is,
for combinatorial reasons,really impractical, it might be better to randomize such things as the orders of
generationsand cheding, and re-run the algorithm repeatedly to samplethe con dence region.®

Lastly, any pattern which is strictly soc | where there are subwords of allowed words which are
forbidden | the algorithm will fail to pick up the pattern. A particularly annoying example, suggestedby
Cris Moore, is the languagewhich consistsof all strings wherethe total numbers of zeroesand onesare even.
The dicult y hereis that while the ertire data-stream could not consist of (say) the string 000111, that
could occur as a substring (of 00011101or 000111100r even 000111000113, and there is no way of telling
whether or not the string as a whole is admissible until we reac its end. Existing merging algorithms also
fail on this example, however'® It's not clear how to work around this.

5.3 Some Notes on an Implemen tation

We implemented the algorithm in C++, running on Sun workstations. For reasonsof speed and memory
consenation, the conditional probabilit y distributions werestoredasa parsetree, rather asin the Crutch eld-
Young algorithm. We usedthe Kolmogorov-Smirnov test, modifying slightly the code in Presset al. (1992),
and, following statistical corvertion, set the signi cance level to 0:05. The absolute-worst-caserun time is
O(N + jAj =™ *1) (Klinkner and Shalizi 2001).

We have tested our implementation on a range of processesvhere we can work out the correct causal
states by hand. These include multinomial IID processesperiodic sequencesstationary Markov models,
hidden Markov models, and master equations/biased random walks. None of the tests caseshas had more
than 7 states. In every case,with N = 1000and L hax = 5, the code returns the correct states at least 95%
of the time. All caseswere computed much faster than the worst-caseanalysiswould lead us to fear. While
these preliminary results are too scarty to support detailed quartitativ e analysis, qualitativ ely, things look
good.

Currently, the algorithm scansin only a single time series. It will be easyto modify the code sothat it
can be given multiple series,storing them all in the sameparsetree. This assumeghat they all comefrom
the samesource,but that's the only way that it makessenseto usemultiple seriesin reconstructing a single

-machine anyway.

5.4 Statistical Analysis and Rates of Convergence
There are somestatistical properties of the algorithm which need careful analysis.

One is value of the signi cance level. If we keepit at :05, then we can expect that, out of twenty times
when we should not split a state, we will do soonce. This will e ect the error statistics (seebelow), but we

9The TETRARIgorithm for causal discovery in graphs does something lik e this (Spirtes, Glymour and Scheines 2001).
10The Crutc h eld-Y oung algorithm works very well, however, on languages with parity constraints on blocks of symbols, say,
ones only occur in blocks of even length.



50

would alsolike to know about how often we will not split stateswhenwe should. This probability, essetially
the power of the test, is not directly given by the signi cance level, but it should be possibleto calculate
using the tools of statistical inferencefor Markov chains (Billingsley 1961). This in turn will tell us what is
a reasonablevalue for the signi cance level.

The secondmajor issueis the scaling of the error statistics (Mayo 1996), or the rates of convergence.
We have seenthat thesegoto zeroasN ! 1 . Innit y is along time, however, and we'd like to know how
long we needto wait for the error to be small. More precisely supposewe intro duce a measureof the error
involved in using the states estimated from N data points, Sy, rather than the true causalstates| call
this error err(Sy). Then we would liketo nd a function n( ;") suc that, if N > n( ;"),

Plerr(Sy) ") 1 (5.3)

Alternately, we x andinvert nto get"(N; )| givenN data points, with con dencelevell |, the error
s " or less. The dependenceof " on N for xed is the rate of convergenceof the algorithm.

The exact rate of convergenceis likely to be complicated and highly dependert on the characteristics of
the processgenerating the data, i.e., on precisely the things we want the algorithm to tell us about. We
would therefore liketo nd functions which bound n( ;") or "(N; ), where the bounds are fairly tight, but
hold acrossa wide range of processesand the bounding functions can be calculated in terms of very general
characteristics; something like the statistical complexity would be ideal. We want, if not exactly a uniform
rate of convergencein the technical sensethen something of that ilk.

Under the circumstanceswe've assumed,it's easyto adapt results from large deviation and empirical
processtheory (Ellis 1985; Pollard 1984;Feng and Kurtz 2000)to seethat the empirical conditional distri-

butions Py (S j S= s) should corverge on P(S j S= s) exponertially in N. This doesnot imply that
the global error convergesexponertially, however. In fact, basedon studies of the rate of corvergenceof
other statistical estimators, especially for stochastic processeqBickel and Ritov 1995; van de Geer 2000;
Bosq 1998) we conjecture that the rate of corvergencewill be polynomial in N andin C 1. Generally such
rates of convergenceresults depend very strongly on the size of the spaceof possiblemodels the estimation
algorithm must seard through, so we also conjecture that the splitting algorithm, with its constraints of
determinism and the like, will corvergefasterthan the Crutch eld-Y oungalgorithm. (For preliminary results
on the error statistics of the Crutch eld-Y oung algorithm seeCrutch eld and Douglas 1999.)

Establishing analytical boundson the rate of corvergenceis likely to be extremely tric ky, though there are
promising hints in machine learning theory (Evans, Rajagopalanand Vazirani 1993),in addition to empirical
processtheory and large deviations theory. A numerical-experimental approach to the problem would be to
X on a global error measure,suc as the relative entropy betweenthe actual distribution over sequences
and that predicted by Sy, and measurehow it varieswith N and with characteristics of the process,such
asC . We could similarly look at ¢ asa function of N, where we expect the meanto corvergeon the true
value from below, and more rapidly the smaller C is.
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Chapter 6

Connections to Other Approac hes

6.1 Time Series Mo deling

The goal of time seriesmodeling is to predict the future of a measuremen serieson the basis of its past.
Broadly speaking, this canbe divided into two parts: identify equivalent pastsand then producea prediction

for eath Iclassof equivalent pasts. That is, we rst pick a function : S 7! R and then pick another function

p:R 7!'s. Of course,we can choosefor the range of p futures of some nite length (length 1 is popular) or
even choosedistributions over these. While practical applications often demand a single de nite prediction
| \Youwill meetatall dark stranger”, there are obvious advantagesto predicting a distribution | \Y ou
have a :95 chanceof meeting a tall dark stranger and a :05 chanceof meeting a tall familiar albino." Clearly,
the best choicefor p is the actual conditional distribution of futures for eadh 2 R . Giventhis, the question
becomeswhat the bestR is;i.e., What is the best ? At leastin the caseof trying to understand the whole
of the underlying process,the best is, unambiguously, . Computational medcanics subsumesthe whole of
traditional time seriesmodeling.

Computational medanics| in its focuson letting the processspeak for itself through (possibly impover-
ished) measuremets | follows the spirit that motivated one approach to experimentally testing dynamical
systemstheory. Speci cally, it follows in spirit the methods of reconstructing \geometry from a time se-
ries" introduced by Pacdkard, Crutch eld, Farmer and Shaw (1980) and Takens(1981). A closer parallel is
found, however, in later work on estimating minimal equations of motion from data series(Crutch eld and
McNamara 1987).

6.2 Decision-Theoretic Problems

The classicfocus of decisiontheory is \rules of inductive behavior" (Neyman 1950; Blackwell and Girshick
1954;Luce and Rai a 1957). The problem is to chosefunctions from obsened data to coursesof action that
possesdlesirable properties. This task has obvious a nities to consideringthe properties of and its rivals

. We can go further and say that what we have doneis considera decisionproblem, in which the available
actions consistof predictions about the future of the process.The calculation of the optimum rule of behavior
in generalfacesformidable technicalities, such asproviding an estimate of the utilit y of every di erent course
of action under every di erent hypothesis about the relevant aspects of the world. Remarkably enough,
however, we can shaw that, for anything which it's reasonableto call a decision problem, the optimal rule
of behavior can be implemented using (App endix D).
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6.3 Stochastic Pro cesses

Clearly, the computational medhanics approach to patterns and pattern discovery involves stochastic pro-
cessesin an intimate and inextricable way. Probabilists have, of course, long been interested in using
information-theoretic tools to analyze stochastic processesparticularly their ergodic behavior (Billingsley
1965; Gel'fand and Yaglom 1956; Caines 1988; Gray 1990). There has also been considerablework in the
hidden Markov model and optimal prediction literatures on inferring models of processegrom data or from
given distributions (Blackwell and Koopmans 1957; Ito, Amari and Kobayashi 1992; Algoet 1992; Upper
1997; Jaeger2000). To the best of my knowledge, however, thesetwo approacheshave not beenpreviously
combined.

Perhapsthe closestapproad to the spirit of computational medanicsin the stochastic processliterature
is, surprisingly, the now-classicaltheory of optimal prediction and ltering for stationary processesdeveloped
by Wiener and Kolmogorov (Kolmogorov 1941;Wiener 1949;Wiener 1958;Schetzen1989; Wiener 1961). The
two theories sharethe useof information-theoretic notions and the uni cation of prediction and structure. So
far asl'vebeenableto learn, however, no one hasever usedthis theory to explicitly identify causalstatesand
causal structure, leaving these implicit in the mathematical form of the prediction and Itering operators.
Moreover, the Wiener-Kolmogorov framework forcesus to sharply separatethe linear and nonlinear aspects
of prediction and Itering, becauseit has a great deal of trouble calculating nonlinear operators (Wiener
1958;Schetzen1989). Computational medanicsis completely indi eren t to this issue,sinceit packsall of the
process'sstructure into the -machine, which is equally calculablein linear or strongly nonlinear situations?.

6.4 Formal Language Theory and Grammatical Inference

A formal languageis a set of symbol strings (\w ords" or \allo wed words") drawn from a nite alphabet.
Every formal language may be described either by a set of rules (a \grammar") for creating all and only
the allowed words, by an abstract automaton which also generatesthe allowed words, or by an automaton
which acceptsthe allowed words and rejects all \forbidden" words.? -machines, stripp ed of probabilities,
correspond to such automata | generative in the simple caseor classi catory, if we add a reject state and
move to it when none of the allowed symbols are encourtered.

Since Chomsky (1956, 1957), it has beenknown that formal languagescan be classi ed into a hierarchy,
the higher levels of which have strictly greater expressie power. The hierarchy is de ned by restricting the
form of the grammatical rules or, equivalertly, by limiting the amount and kind of memory available to the
automata. The lowest level of the hierarchy is that of regular languages,which may be familiar to Unix-
using readersas regular expressions. These correspond to nite-state machines, for which relatives of the
minimalit y and uniqguenesstheoremsare well known (Lewis and Papadimitriou 1998), and the construction
of causal states is analogousto \Nero de equivalenceclassing" (Hopcroft and Ullman 1979). Our theorems,
however, are not restricted to this low-memory, non-stochastic setting; for instance, they apply to hidden
Markov models with both nite and in nite numbers of hidden states (Upper 1997).

The problem of learning a language from obsenational data has been extensively studied by linguists,
and by computer sciertists interestedin natural-language processing.Unfortunately, well developed learning
techniques exist only for the two lowest classesin the Chomsky hierarchy, the regular and the context-free
languages.(For a good accourt of these proceduresseeCharniak (1993) and Manning and Scetze (1999).)
Adapting and extending this work to the reconstruction of -machines should form a useful area of future
researd (cf. the \hierarc hical -machine reconstruction" of Crutch eld (1994a)).

1For more on the nonlinear Wiener theory, see Section 7.6.
2For more on formal languages and automata, seeApp endix A.4.
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6.5 Computational and Statistical Learning Theory

The goal of computational learning theory (Kearns and Vazirani 1994;Vapnik 2000)is to identify algorithms
that quickly, reliably, and simply lead to good represenations of a target \concept". The latter is typically
de ned to be a binary dichotomy of a certain feature or input space. Particular attention is paid to results
about \probably approximately correct” (PAC) procedures(Valiant 1984): those having a high probability
of nding members of a xed \representation class" (e.g., neural nets, Boolean functions in disjunctive
normal form, or deterministic nite automata). The key word here is \ xed"; asin contemporary time-
series analysis, practitioners of this discipline adknowledge the importance of getting the represeration

classright. (Getting it wrong can make easy problems intractable.) In practice, however, they simply
take the represeration classas a given, even assumingthat we can always cournt on it having at least one
represenation which exactly captures the target concept. Although this is in line with implicit assumptions
in most of mathematical statistics, it seemsdubious when analyzing learning in the real world (Crutch eld

1994a;Boden 1994; Thornton 2000).

In any case,the preceding developmert made no such assumption. One of the goals of computational
medhanicsis, exactly, disoovering the bestrepreseration. This is not to say that the results of computational
learning theory are not remarkably useful and elegar, nor that one should not take every possibleadvantage
of them in implemerting -machine reconstruction. But thesetheories belong more to statistical inference,
particularly to algorithmic parameter estimation, than to foundational questionsabout the nature of pattern
and the dynamics of learning.

6.6 Description-Length  Principles and Univ ersal Coding Theory

Rissanen'sminimum description length (MDL) principle, most fully described in Rissanen(1989), is a pro-
cedure for selectingthe most concisegenerative model out of a family of models that are all statistically
consistert with given data. The MDL approach starts from Shannon'sresults on the connection between
probability distributions and codes.

Supposewe choosea represenation that leadsto a classM of models and are given data set X. The
MDL principle enjoins usto pick the model M 2 M that minimizes the sum of the length of the description
of X given M, plus the length of description of M given M . The description length of X is taken to
be logP(XjM); cf. Eq. A.7. The description length of M may be regarded as either given by some
coding scheme or, equivalertly, by somedistribution over the members of M . (Despite the similarities to
model estimation in a Bayesianframework (Lindley 1972), Rissanendoesnot interpret this distribution as
a Bayesianprior or regard description length as a measureof evidertial support.)

The construction of causal states is somewhat similar to the states estimated in Rissanen'scontext al-
gorithm (Rissanen 1983; Rissanen1989; Buhimann and Wyner 1999), and to the \v ocabularies" built by
universal coding schemes,such asthe popular Lempel-Ziv algorithm (Lempel and Ziv 1976;Ziv and Lempel
1977). Despite the similarities, there are signi cant di erences. For a random source| for which there is a
single causalstate | the context algorithm estimatesa number of statesthat diverges(at least logarithmi-
cally) with the length of the data stream, rather than inferring a single state, as -machine reconstruction
would. Moreover, the theory makesno referenceto encalings of rival models or to prior distributions over
them; C (R) is not a description length.

6.7 Measure Complexit y

Grassherger (1986) proposedthat the appropriate measureof the complexity of a processwas the \minimal

averageShannoninformation needed"for optimal prediction. This true measure complexity wasto be taken
as the Shannon entropy of the states used by someoptimal predictor. The same paper suggestedthat it
could be approximated (from below) by the excessentropy; there called the e e ctive measure complexity, as
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noted in Section4.4 above. This is a position closelyallied to that of computational medanics,to Rissanen's
MDL principle, and to the minimal embeddingsintroduced by attractor-reconstruction methods.

In contrast to computational medanics, however, the key notion of \optimal prediction" was left un-
de ned, aswere the nature and construction of the states of the optimal predictor. In fact, the predictors
used required knowing the process'sunderlying equations of motion. Moreover, the statistical complexity
C (S) diers from the measurecomplexities in that it is basedon the well de ned causal states, whose
optimal predictive powers are in turn precisely de ned. Thus, computational mecdanics is an operational
and constructive formalization of the insights expressedn Grassberger (1986).

6.8 Hierarc hical Scaling Complexit y

Introduced in Badii and Politi (1997, ch. 9), this approach seeks,like computational medanics, to extend
certain traditional ideas of statistical physics. In brief, the method is to construct a hierarchy of n'" -order
Markov models and examinethe convergenceof their predictions with the real distribution of obsenablesas
n! 1 . The discrepancybetween prediction and reality is, moreover, de ned information theoretically, in
terms of the relative entropy or Kullback-Leibler distance (Kullback 1968; Cover and Thomas 1991). (I've
not usedthis quantity.) The approach implements Weiss'sdiscovery that for nite-state sourcesthere is a
structural distinction between block-Mark ovian sources(subshifts of nite type) and so ¢ systems Weiss
showvedthat, despitetheir nite memory, so ¢ systemsare the limit of an in nite seriesof increasingly larger
block-Mark ovian sources(Weiss1973).

The hierarchical-scaling-complexity approach has se\eral advantages, particularly its ability to handle
issuesof scaling in a natural way (seeBadii and Politi (1997, sec.9.5)). Nonetheless,it doesnot attain all
the goalsset in Section 2.3.5. Its Markovian predictors are so many black boxes, saying little or nothing
about the hidden states of the process,their causal connections,or the intrinsic computation carried on by
the process.All of theseproperties are manifest from the -machine. A productive line of future work would
be to investigate the relationship between hierarchical scaling complexity and computational medanics,
and to seewhether they can be synthesized. Along these lines, hierarchical scaling complexity is sort of
reminiscert of hierarchical -machine reconstruction (Crutch eld 1994a).

6.9 Contin uous Dynamical Computing

Using dynamical systemsas computers has becomeincreasingly attractiv e over the last ten years or so
among physicists, computer sciertists, and others exploring the physical basis of computation (Huberman
1985; Moore 1996; Moore 1998; Orponen 1997; Blum, Shub and Smale 1989). These proposalshave ranged
from highly abstract ideasabout how to embed Turing machinesin discrete-time nonlinear cortin uous maps
(Crutch eld and Young 1990; Moore 1990)to, more recertly, schemesfor specializednumerical computation
that could in principle be implemented in current hardware (Sinha and Ditto 1998). All of them, however,
have been synthetic, in the sensethat they concern designing dynamical systemsthat implement a given
desired computation or family of computations. In contrast, one of the certral questionsof computational
mechanics is exactly the cornverse: given a dynamical system, how can one detect what it is intrinsically
computing?

Having a mathematical basisand a set of tools for answering this questionare important to the synthetic,
engineeringapproadc to dynamical computing. Using thesetools we may be able to discover novel forms of
computation embeddedin natural processeghat operate at higher speeds,with lessenergy or with fewer
physical degreesof freedomthan currently possible.
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Chapter 7

Transducers with Memory

We watch an ant make his laborious way acrossand wind- and wave-moldedbead. He moves
ahead,anglesto the right to easehis climb up a steepdunelet, detours around a pebble, stops for
a momert to exchangeinformation with a compatriot. Soasnot to anthrop omorphize about his
purposes,| sketch the path on a pieceof paper. It is a sequenceof irregular, angular segmeits
| not quite a random walk, for it hasan underlying senseof direction, of aiming towards a goal

Viewed as a geometric gure, the ant's path is irregular, complex, hard to describe. But its
complexity is really a complexity in the surface of the bead, not a complexity in the ant. On
that samebead another small creature with a home at the same place as the ant might well
follow a very similar path ::: .

The ant, viewed asa behaving system,is quite simple. The apparent complexity of its behavior
over time is largely a re ection of the complexity of the ervironment in which it nds itself.

| Herbert Simon (1996, pp. 51{52)

7.1 Intro duction

The previous chapters have developed the computational mecdanicsfor memorylesstransducersand for time
series. We now \combines our information” to deal with transducerswith memory. The picture is that one
series,called the input, is fed into a transducer, box (or other physical process),resulting in an output series.
This diers from the caseof memorylesstransduction becausethe transducer has internal states, and soa
kind of memory for both the past of the input processand its own internal dynamics (which may well be
stochastic). The goal is to be able to identify the internal states of the transducer and their structure of
connection| to nd the -transducer.

Put another way: we have two time series,and the future valuesof the output are a stochastic functional
of the history of the input. We want to put this relationship in \transducer form," replacing the stochastic
functional of the serieswith a stochastic function of an internal or hidden state of a transducer, which in turn
is a functional of the history. That is, we want to represen theserelationships by meansof a generalization
of what automata theory calls\ nite state transducers" or \sequential machines" (Moore 1956;Booth 1967,
Hartmanis and Stearns1966;Carroll and Long 1989). We won't assumethat we'll needonly a nite number
of states.

7.1.1 Notation and Assumptions

$
Adapting the notation of Chlapter 4 in the obvious way, write the stochastic processof the inputI as X, its

past as X , and its future as X . It takesvaluesfrom the nite alphabet A. The symbols Y, Y, Y, B sene
the samerole for the output process.
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Both input and output valuesare in generalmultidimensional variables, but we don't care about that.

Write the set of all possibleinput histories as X . Similarly, write Y for the set of all possible output
histories.

7.2 Simplifying the Transducer Problem

It is commonly assumedthat you completely specify a transducer by giving the conditional probabilities of all
nite-length input-output pairs. That is, you needonly specify P(Yn+1; Yn :::Y1jXn;::: X)) to completely
specify the behavior of the transducer. I've never seena demonstration that this is enough,but it's hard to
seewhat elsethere could be, and in any casel shall appeal to proof-by-consensus.

Assumeit is true, and factor that conditional probability as follows:

1L L1 L L 1
Py =¥ bXx =x a (7.1)
L1 L1 L L 1 rL1 L1 L L 1
= P(YL— by =Yy X = X a)P(y =Yy X =X a) (7.2)
1 L1 1 L1 L L 1 L1 L1 L1 L 1
= P(Y.=HY =Y X =x @py =Y ix =x ) (7.3)
In the last line, | assumedthat the future of the input is independert of the past of the output, giventhe past
of the input. This is true just when there is no feedbak from output to input. Il deal with the feedbak
casebelow (Section 7.5).
. . . rL1 L1 L1 L 1 . .
Clearly, we can repeat this factoring with the last factor, P(y =Y X = X ), sinceit has
the sameform as our original term. Thus, to get all the conditional probabilities neededfor the transducer,
11 L L

it is enoughto know all the probabilities of the form P(Y jX ;Y ). We then build up the probabilities of
output sequencesy multiplying thesenext-output conditional distributions together.
Reverting to our usual habit of consideringa semi-in nite history, this meansthat we want conditional

11
probabilities of the form P(Y j X ;Y); all the other conditional probabilities we require can be obtained from
this distribution by \marginalizing" the histories down to the needed nite length. Finding transducer states
reducesto nding stateswhich \get right" the next output, giventhe completeinput and output histories.

7.3 Eectiv e Transducer States

The de nitions of e ectiv e states, of predictive ability and of statistical complexity all transfer in the obvious
way, exceptthat | de ne alternate states as equivalenceclassesover the joint history of inputs and outputs.
I'll give all thesede nitions over again for conveniencehere.

De nition 20 (Join t History) The joint history of a transdue@r systemis the random variable (X ;Y),
which takesvaluesfrom the sppce X Y. (X;Y) (a;b) denotesthe joint history obtained by appending a
to the input history and b to the output history, (X a; ¥ b).

Denition 21 (Eectiv e States of Transducers) Transdu@r e ective states are equivalen@ classesof

joint histories. To each classof e ective statesR there correspndsa function : X Y 7! R. The random
variable for the current e ective state is R, its realizations

De nition 22 (Pr edictive Power for Transducer E e ctive States) The predictive power of R is

measured by the entropy of future outputs conditional on the presente ective state and the future inputs,
1 L1 1 L1

H[Y iR; x ] R has more predictive power than RO H[Y jR; X 1< H[Y jRO ]

1Conditioning on the output history makesa dierence i the transducer has memory and internal stochasticit y.
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1 L1
I include X in the conditioning variablesbecausd want to attend only to how well the e ectiv e states
capture the internal structure of the transducer, and the relation it imposesbetweeninputs and outputs,
not how well they do that and predict the future of the input series.

1L 1 L1
Lemma 14 (The OIld Country Lemma for Transducers) For all R and all L, H[Y jR;X |
1 L1

HIY OGY) X T

P L1 P L1
Proof. (R;X )= ( ((X;Y)):X ), i.e., the former is a function of the latter. Apply Eg. A.25 and the
lemma follows.

De nition 23 (Prescience) An e ective state class® is prescienti

PL P L1 1L L1
HIY jR:X 1 = HIY j(X;Y)iXx ]

for all L.

Lemma 15 (Prescience, Suciency , and Conditional Indep endence) If an e ective state class 23
is prescient, thenit is a su cient statistic for predicting the next output from the joint history, and it makes
the next output conditionally independent of the joint history.

1L 1 L1 1L 1 L1
Proof. Prescience) suciency: SinceH[Y jli?;x ]1=HIY j(X;Y); X ], it follows (setting L = 1)
1

that H [\!(1jF‘?] =H [\!(1j(x ;Y)]- Therefore | [;( ;Ii?] = [;(1; (X;Y)], and by Proposition 6, R is a su cien t
statistic. Prescience) conditional independence:directly from Lemma 37.

Remark. The argumert in the proof can be reversedto show that if an e ectiv e state classis a su cien t
statistic, it attains the lower bound of Lemma 14 when L = 1. However, this is not enoughto give us
prescience.

7.3.1 Determinism

De nition 24 (Determinism for State Classes) A class of e ective states R is deterministic if the
current state and the next input and next output x the next state. That is, there exists a function g such

that ((x;Y¥) (ab)=9( (x;Y)):(ab), 8(a;b)2 A B.

Remark. This de nition of determinism implies that transitions from one state to another happen after
seeingboth a new input and a new output. In the theory of nite state transducers(Booth 1967), this is a
\Mealy machine", as opposedto a \Mo ore machine," which has a single output for ead state, and makes
transitions only on inputs. Translation betweenthe two represerations is always possiblefor non-stochastic
transducers,but is sometimesvery awkward. Formulating a\Mo ore" versionof the computational medanics
of transducersis an interesting exercise,but outside the scope of this book.

Lemma 16 (Equiv alent Determination Lemma) R is deterministic if and only if

8(X1;¥1);(x2;Y2) 2 X Y and
8(a;b) 2 A B;

(X1;¥1) (X2;¥2) ) (X1;¥Y1) (&b (X2;¥Y2) (ab:
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Proof. If the statemert about equivalenceis true, then obviously the function invoked by De nition 24
existsand the statesare deterministic. | thereforeonly haveto provethat the existenceof the function implies

that the equivalence. Supposeit did not. Then there would exist at least onetriple (X1;Y1);(X2; Y2);(a;b)
sud that

((x1;¥1)) = ((Xx2;Y2)) and (7.4)
((x1;Y1) (b)) 6 ((x2;Y2) (ajb) (7.5)
By hypothesis,

((x1;Y1) (ab) = g( ((x1;Y¥1));(a;b) (7.6)
((x2;Y2) (a;0) = g( ((x2;Y2);(ab); (7.7)
so
g( (x1;¥Y1);(ab) & g( ((x2;Y2));(a;b) : (7.8)
But, substituting equalsfor equals,that would mean
g( (x1;Y1));(ab) & g ((x1;Y1));(a;b) ; (7.9)

which is absurd. Therefore there is no sud triple, and the promised implication holds. QED.

Lemma 17 (Suciency and Determinism Imply Prescience) If R is deterministic and a su cient
11

statistic for predicting Y from (X;Y), then R is prescient.

Proof. By Proposition 6,

IV 0GY) = 1Y GR] (7.10)
HIY'] HIYJOGY)] = HIY] HIY R] (7.11)
HIY JOGY)] = HIY IR]: (7.12)

1L 1 L1
Now, let us considerH[Y |S;X ]. Write R1;R>; etc., for the presen, next, etc., e ectiv e states. De-
compose the conditional entropy of the future outputs as follows, using the chain rule for entropy (Eqg.
A.17).

L1 X

1L ! ! 111
HIY jJR;X ] = HIY; JR:X 1Y ] (7.13)
j=1
= H[?i iR;] (7.14)
j=1
= 7 OHIY G Y),] (7.15)
j=1
! P11
= HIY; iy x oy ] (7.16)
J_lg L 1 L
= H[Y j(X;Y):X 1] (7.17)

Eq. 7.14 comesfrom the determinism of the e ectiv e states. The last line usesthe chain rule again. QED.
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7.4 Causal States

Denition 25 (Transducer Causal States) The causal state are the range of the function

(%)) (7.18)
= (Xo:yo)j8(a;b)2A B;8k’2 B

POY = B(X:Y) = (X ¥) = PCY = Bi(x;v) = (x5 yY)
and P({(l = Bi(X;Y) = (X;¥) (ab) = P(\!(l = Bi(X;Y) = (X yo) (a;b)

Remark. The secondclauseof the de nition of ensuresthat the causalstates are deterministic, which
(as will be seen)is important for much of what follows. It would be very interesting to know necessary
and su cien t conditions for the secondclauseto be redundant. An obvious su cien t condition is that the
transducer be memoryless.

Theorem 12 (Mark ov Prop erty for Transducer Causal States) Given the causalstateattime t, and
the valuesof the input and output seriesfrom time t to time t+ L, the causalstateat t+ L, S, is independent
of the valuesof the input and output processes,and of the causal state, at times before t, for all positive L.
. 1L 1 L
8L2 *; SL(X;Y)S;Y ;X (7.19)

1L 1L
Proof. Invoke the determinism of the causalstates L times to seethat S, is a function of S;Y and X

Henceit is trivially conditionally independert of everything else. QED.
The Markov property implies that the causal structure of the transduction processtakesa particular,
repetitiv e form, illustrated in Figure 7.1.

Lemma 18 (Suciency of the Transducer Causal States) The causal states are su cient statistics
for predicting the next output from the joint history.

11 11
Proof. It is obvious from De nition 25that P(Y = BS = ((x;¥Y))) = P(Y = bi(X;Y)= (X;Y)). Hence,
by De nition 66, they are su cien t. QED.

Theorem 13 (Prescience of Causal States (T ransducers)) The causalstatesare prescient.

Proof. From Lemma 18, the causalstatesare su cien t for the next output. Also, from their de nition, they
are deterministic. Hence,by Lemma 17, they are prescien. QED.

Lemma 19 (Determined Renemen t Lemma) If ® is deterministic class of prescient states, then it
is are nement a.e. of S.

Proof. BecauseR is presciert, H [\!{ ljli?] is as small as possible. Hence eac cell of the partition must
be at least weakly homogeneousfor \!(l, otherwise (by the usual Re nement Lemma argumen) it would
mix distributions for ;(l, raising its conditional entropy. Hence ((X1;Y1)) = ((X2;Y2)) implies that
P(\!(lj(x;Y) = (X1;Y1)) = P(\!(lj(x;Y) = (X2;Y3)) with probability one. Because® is (ex hypothesi)
deterministic, the Equivalent Determination Lemma (16) applies. Thus, if ((X1;Y1)) = ((X2;Y2)), then

((x1;Y1) (a;b) = ((x2;Y2) (a;b) for all (a;b). But the conjunction of those two conditions propo-
sitions is the proposition that ((x1;Y1)) = ((X2;Y2)). Hence,under the hypothesesof the lemma, if

((X1;Y1) = ((X2:Y2), then ((X1;¥Y1) = ((X2;Y2)) almost always. Hence R is a re nement of S
almost everywhere. QED.
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Input past| | Output pasq

1N 7]

11 X1 S1 <Y1

LN N

12 X2 =~ S2 = Y2

LN N

13 X3 =~ S3 = Y3

PSSR

Figure 7.1: Diagram of causalin uences for a portion of the time ewlution of a transducer with memory
but no feedba&k. The input processmay not be Markovian, sol include the (autonomous) causal states of
the input process.The absenceof feedbad shows up asa lack of causal paths from the output variablesto

future inputs.
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Theorem 14 (Transducer Causal States Are Minimal) If ® is deterministic classof prescientstates,
thenC (®) C (S).

Proof. Entirely parallel to the previous minimalit y theorems, using the Determined Re nement Lemma
in place of the other re nement lemmas.

Theorem 15 (Uniqueness of the Transducer Causal States) If ® is a deterministic class of pre-
scient states, and C (F@) = C (8), then there exists an invertible function f suchthat S = f(Fb) almost
always.

Proof. Identical to the proof of the uniquenesstheorem for time series.

Theorem 16 (The Transducer Causal States Are Minimally Stochastic) For any prescient, deter-

11 11
ministic rival classof states®, H[RIR; X ] H[SYS;X ], wher RO is the next ~-state and S° is the next
causal state.

1111
Proof. Begin by considering the uncertainty in R% given R and (X ;Y ), remembering that R is
deterministic.

HRGR: (X Y]

= 0 (7.20)
= HIRCY R T OHEY jRX ] (7.21)
= H[i(ljﬂ?o;#?;;(lh H[F‘?‘ﬁﬂ?;kl] H[i(ljrb;kl] (7.22)
HIRIRX 1 = HIY JRGRIX T HIY jR;X ] 7.23)
This appliesto the causalstates, too:
HISISiX ] = HIYiSiX 1 HIY SeSiX 1: (7.24)

11 11
SinceX happensafter Y , the latter can depend on the former only if they are both dependert on a third
11
variable. The only such variable available is X . But conditioning on ® makesy independert of X, so

11 11 11 11 11
H[Y jli?;x 1=HJ[Y jli?]. And of courseH [Y jli?] = HJ[Y jS]. Bearing this in mind, subtract Eq. 7.24 from
Eq. 7.23.

HIRIRX ] HISYS;X ]
11 11 11 [ 11 [ 11 11
HIy jRER;X 1 HIY jR;X 1 HIY jS;X 1+ H[Y jS%S;X ] (7.25)

HIV iSeSix T HIY jR%R:X ] (7.20)

11
By the Determined Re nement Lemma, S and S° are functions of ® and R, respectively. HenceS% S; X

11
is a function of R%R; X , and by Eq. A.25,

HIY 1S%SiX ] HEY %R X ] (7.27)

HIRGR X T HISISiX 1 O (7.28)
11 11

HRIR; X ] HSYS:X 1: (7.29)

QED.



62

Remark. In the caseof time series,we looked at H [ﬂ?‘iﬂ?] to gaugethe internal stochasticity of a classof

e ectiv e states. Here, however, that quartity = H[RYR; X 1] +H [;< 1jﬁ?] H [;< 1jli?o; ®R]. That is, it involves
the degreeof randomnessin the input process,as well as whatever randomnessis in the internal dynamics
of the transducer. But it would be rather much to expect that the states which predict the behavior of the
transducer nicely are also good predictors of the behavior of the input process?

7.5 Transduction with Feedback

| assumedabove that the output has no in uence on the input. This is often true, and it's tlhe classic

transducer problem, but there is no logical necessiy for this to be so. If the Y doesin uence X, there's
feedbak (and the labels\input" and \output" are dubious). S remainsthe unique, optimal, minimal class
of states for predicting the future of the output on the basis of the joint history. But we can go through an
ertirely parallel construction for predicting the input on the basisof the joint history; call the resulting class
of states F. The causalstructure which results is that of Figure 7.2.

Transducerswithout feedbad are simply a special caseof this situation, represeried in the diagram by
erasingthe arrows from Y; to F;.

Now, if we considerthe input and the output jointly, we have simply another discrete time-series,asin
Chapter 4, sothe theory developed there applies. That is, we can construct a classof causal states (call it
J ) for the joint input-output process. This raisesthe question of how J is related to S and F, bearing in

mind that all three are partitions on X Y.
We know that

! ,
Y L(X;Y)jS (7.30)
11
X AL(XY)IF - (7.31)
SinceS and F are both functions of (X ;Y), we have (Eq. A.38)
11 .
Y L(X;Y);FjS (7.32)
! ,
X L(X;Y);SiF : (7.33)
Applying Eq. A.34,
11
Y L(X;Y)iS;F (7.34)
! _
X L(X;Y)iS;F : (7.35)
Furthermore, it's certainly true that
11 11
Y L(X;Y) X jS;F (7.36)
11 11
X L(X;Y)Y |S;F (7.37)
11 11

since X hasno direct causale ect on Y , and any probabilistic dependencythere may be is screenedo
by S and F together. Now Eg. A.33 tells us that
1111 .

(X ;Y )L(X;Y)iS;F ; (7.38)
which is to say, the combination of S and F is a su cien t statistic for joint futures of length 1. Sinceit is
also deterministic, by Theorem 6, it is a prescien classof states. But then by the Re nement Lemma for
Time Series(Lemma 12), there is a mapping from S;F to J .

|1 L1 [ 1 L1
2Note that H[X jR] H[X jR%R]= I[X ;RYR], the mutual information between X and RO conditional on R.
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7.5.1 An Aside: The Elimination of Dialectics in Favor of Mechanics

The notion of a dialectical relationship betweentwo ertities is a famously murky one (for an unusually lucid
historical accourt, seeKolakowski (1978, vol. 1)). The only reasonably clear accourt | have found is Phil
Agre's.

A dialectical relationship betweentwo ertities, called moments hasthree properties: (1) the
momerts are engagedin a time-extended interaction, (2) they in uence ead other through this
interaction, and (3) this in uence hasgrown su cien tly largethat it becomesmpossibleto de ne
either momernt exceptin terms of its relationship to the other. The momerts are typically, though
not necessarily thought of as being in conict with one another; the interaction betweenthem
and their mutual in uence are products of this conict. If this seemsoverly metaphysical :::
think of it in the following way. Make a list of the states or properties of that the two ertities
possessat a given momert. Then take ead of the lists in isolation from the other and ask
whether it is possibleto nd any rhyme or reasonfor that set of states or properties, except by
referenceto the interaction and cumulative in uence that the entity has gonethrough. If not,
i.e., if the only reasonableexplanation for ead ertit y's list makesreferenceto its past history of
interaction with the other ertity, then the relationship betweenthe two ertities is dialectical in
nature. (Agre 1997,pp. 318{319)

1L 1L
Put in the language of computational medanics, this says that I[Y ;Y] and I[X ;X] are negligible,
L L

| ]

while I[Y ;(X;Y)l and I[y ;(X;Y)] are substartial. There is nothing implausible about that, and in fact
it's just when we're likely to think of the processesas shawing feedba&. We may, of course, construct the
joint causalstate for the dialectical pair in the usual way. But now something amusing happens.

Supposethat the momerts of the dialectical relationship are ordinary piecesof matter. (An insistence
on this point is very much a part of what was historically the most in uen tial school of dialectical thinking.)
That being the case,they should obey ordinary statistical mecdanics. Then, applying the techniques of
Section4.5, we can go from the causalpartition of the joint histories, to a partition of the joint phasespace
of the two systems. That partition has the following properties:

1. The partition correspondsto a single obsenable macroscopicvariable.
2. The dynamics of that variable are Markovian.
3. The current value of the variable is a su cien t statistic for the ertire future of both of the momerts.

The ewolution of this macrovariable shaws no signsof history or of interaction.

The upshot is that, even when it's most reasonableto talk about dialectical relationships, we can al-
ways replace the dialectical represenation with a purely (statistical) medanical one, without any loss of
information.

7.6 Kindred Approac hes

As | said at the beginning of the chapter, the -transducer is analogousto what computer sciertists call a
\ nite state transducer"”, (De nition 64). For seweral decadesat least, however, most treatments of these
objects have beenertirely nonstochastic. (The last detailed treatment of stochastic FSTs | know of is that
of Booth (1967).) Sofar as| have beenable to learn, nothing like this construction of deterministic states
for stochastic transducers exists in the FST literature. And, again, what | have donein this chapter does
not assumethat only a nite number of states are needed,or that the memory of the transducer extends
only a nite distanceinto the past.

There has beena burst of work on stochastic models of discrete transduction in the last few years,driven
by the demandsof bioinformatics (Singer 1997; Apostolico and Bejerano 2000; Eskin, Grundy and Singer
2000). Many of these models even have very nice determinism and Markov properties. The -transducer
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approadc formally incorporatesthem all, and hasthe extra advantagesof not having to postulate the Markov
properties, nor of having to guessthe internal architecture of the states, the one being proved and the other
inferred.

Perhaps the best-known theory of nonlinear transducers is that of Norbert Wiener®. This expressesa
nonlinear, deterministic relationship between cortinuous input and output signals by means of a \p ower
series" of functionals. The n" term in the seriesis the corvolution of a kernel with n copiesof the input.
The kernelsare chosen,with extreme cleverness,sothat they can be calculated from the cross-correlationof
the input and the output, and moreover sothat, whenthe input is white noise,all the kernelsare statistically
independert. This theory has actually beenapplied to biological systemswith considerablesuccesqRieke,
Warland, de Ruyter van Steveninck and Bialek 1997), and can be expandedto accommalate stochastic
transducers (Victor and Johannesmal986).

While Wiener's theory is very elegan, the fact that it usesa seriesexpansionhasits own drawbadks. The
calculation of the higher-order kernelsfrom data, while certainly possible,is not easy and most applications
truncate the seriesat the rst or at most the secondterm. There is, however, no reasonto think that the
seriescorvergesquickly, that the rst two terms are a good approximation to the whole. In fact, it would be
nice if we didn't have to use any sort of seriesat all, and simply calculate all e ects, linear and nonlinear,
at once. The -transducer doesthis, much asthe -machine for a time seriesdoes.

In information theory, one of our transducersis a channel with memory. This is, in a way, unfortunate,
becausethe vastly overwhelming majority of information theory is about memorylesschannels, and what
little there is on channelswith memory has concerirated on the channel capacity, the rate at which a signal
can be transmitted without error (Verdu 1994,sec.3). In all modesty, the theory in this chapter may be of
someuseto peopleworking on channelswith memory!

7.7 Reconstruction

The state-splitting algorithm of Chapter 5 can easily be adapted to deal with transducerswithout feedbad,
simply by consideringthe joint history, and splitting joint histories when they produce signi cantly di erent
distributions for the next output. The reconstruction of the feedbak state would go in the sameway. The
reliabilit y analysis proceedson exactly the samelines as for time series,sol won't redo it here.

SWiener (1958), the original source, is rewarding but mathematically demanding and full of misprints. A much easier
intro duction is to be had from Rieke, Warland, de Ruyter van Steveninck and Bialek (1997, App. A3), while Schetzen (1989)
covers developments up to about 1980.
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Chapter 8

A Very Brief Intro duction to Cellular
Automata

The chess-tward is the world; the piecesare the phenomenaof the universe;the rules of the
gameare what we call the laws of Nature.
| T. H. Huxley

8.1 An Extremely Informal Description

Take a board, and divide it up into squares,like a chess-tbard or cheder-board. Theseare the cells. Each
cell hasoneof a nite number of distinct colors| red and black, say, or (to be patriotic) red, white and blue.
(We don't allow cortinuous shading, and every cell has just one color.) Now we cometo the \automaton"
part. Sitting somewhereto one side of the board is a clock, and every time the clock ticks the colors of the
cells change. Each cell looks at the colors of the nearby cells, and its own color, and then applies a de nite
rule, the transition rule, specied in advance, to decide its color in the next clock-tick; and all the cells
changeat the sametime. (The rule can sometimestell the cell to stay the same.) Each cell is a sort of very
stupid computer | in the jargon, a nite-state automaton | and so the whole board is called a cellular
automaton, or CA. To run it, you color the cellsin your favorite pattern, start the clock, and stand back.

Now that (I hope) you have a concrete picture, | can get a bit more technical, and more abstract. The
cellsdon't have to be colored, of course;all that's important is that ead cell is in one of a nite number of
statesat any giventime. By custom they're written asthe integers,starting from 0, but any nite alphabet
will do. Usually the number of states is small, under ten, but in principle any nite number is OK. What
counts as the \nearby cells", the neighborhood, varies from automaton to automaton; sometimesjust the
four cellson the principle directions (the von Neumann neightorhood), sometimesthe corner cells (the Moore
neighkorhood), sometimesa block or diamond of larger size;in principle any arbitrary shape. You don't need
to stick to a chess-tard; you can use any pattern of cells which will Il the plane (or \tessellate" it; an
old name for cellular automata is \tessellation structures"). And you don't have to stick to the plane; any
integer number of dimensionsis allowed. You do needto stick to discrete time, to clock-ticks; but CAs
have cousinsin which time is cortinuous. There are various tricks for handling the edgesof the board; the
most common, both of which have\all the advantagesof theft over honesttoil" areto have the edges\wrap
around" to touch ead other, and to assumean in nite board.

Oneimportant useof CAs is to mimic bits and piecesof the real world. CAs are fully discretized classical
eld theories, so they're good at the samethings classical eld theories are, provided cortinuity isn't so
important, and much better at things like messyboundary conditions (Manneville, Boccara, Vichniac and
Bidaux 1990; Chopard and Droz 1998). Their domain of application includes uid ow (Rothman and
Zaleski 1997), excitable media (Winfree 1987), many other sorts of pattern formation (Crossand Hoherberg
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1993; D'Souza and Margolus 1999), ecosystemgLevin, Powell and Steele1993; Tilman and Kareiva 1997),
highway tra c, eventhe dewvelopmert of cities (White and Engelen1993;Clarke, Gaydos and Hoppen 1996;
Manrubia, Zanette and Sole 1999; cf. Anas, Arnott and Small 1998). There's a modest industry of seeing
which typesof CAs have various properties of interest to theoretical physicists| time-reversibility, various
sorts of symmetry, etc. (Gutowitz 1991;Smith 1994). There's evena current of thought pushing the ideathat

CAs capture something really fundamertal about physics, that they are more physical than the di eren tial

equations we have cometo know and love these last three hundred years(To oli 1984; Margolus 1999). |

can't say | buy this myself, but someof its believersare very smart indeed, and anyway it makesfor excellert

science ction (Egan 1994).

8.1.1 General References on CAs

The best non-technical intro duction to cellular automata is the book by Poundstone(1984), which describes
in detail the mostfamousCA of all, Conway's Gameof Life (Berlekamp, Conway and Guy 1982). Flake (1998)
provides a bit more math, and somefun programming projects. Burks (1970) collects foundational papers
from the misty, heroic ageof CA theory, beforethey could be readily simulated and seen on computers. The
standard modern referenceis Gutowitz (1991), but it will probably be supersededby Gri eath and Moore
(forthcoming), if that ever appears.

Cellular automata were intro duced by John von Neumann and Stanislaw Ulam in the 1950sto study the
possibility of mechanical self-repraduction (von Neumann 1966;Burks 1970). There is no adequatestudy of
the history of cellular automata.

8.1.2 A More Formal Description

A CA starts with a d-dimensional regular lattice  of sites or cells! Each cell x has a neightorhood n(x)
of other cells, de nitely including thoseit is connectedto in the lattice, but possibly including others which
are connectedto those; neighborhoods are connectedcomponerts of the lattice containing the original cell.
Every cell has the samesize and shape neighborhood as every other cell, i.e., Tn(x) = n(Tx), whereT is
any spatial translation operator. The standard neighborhoods consist of all cells within a certain distancer
of x; r is the rule radius.

A con gur ation of the lattice (or of the CA) assignsto every cell a value from a nite alphabet A of size
k. We write the value at x ass*. The con guration in the neighborhood of x is s"®). Time is discrete and
goesin the subscript: sf is the value of the cell x at time t. The global con guration at time t is s;.

The CA rule is a function  from a neighborhood con guration to a new cell-value.? The CA's equation
of motion is given by applying the rule to ead point separately:

Sa = () (8.1)

The simultaneous application of to all cellsde nes the glotal update rule , a mapping from A into itself.
Binary (k = 2), r = 1, one-dimensionalCAs are called elementary CAs (ECAs) (Wolfram 1983).
An ensenble operator canbe de ned (Hansonand Crutch eld 1992;Wolfram 1984a)that operateson
setsof lattice con gurations = fsg:

41 = . (8.2)
such that

t+1 = fSt4e1 1S+ = (&) St 2 Q¢ (8.3)

1Sometimes = 9, sometimes just a nite chunk of it.
21f is arandom function, then we have a stochastic cellular automaton .
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8.2 CA as Dynamical Systems

CA aredynamical systemswith discretetime, i.e., maps. They areallittle peculiar, owing to the very discrete
nature of the spacein they live, but many of the familiar conceptsof dynamical systemstheory apply just
ne.

Denition 26 (In variant Set, Fixed Point, Transient) A setof glotal con gurations is invariant i
= . If consistsof a single con guration s , thens is a xed point. If sis not part of any invariant
set, then it is transient.

De nition 27 (A ttractor) A set of con gur ations A is an attractor i
1. A is invariant; and

2. there is a non-empty set of con gur ations U suchthat U\ A=; but U A.

De nition 28 (Basin of Attraction) The basin of attraction Ba of an attractor A is the largest set of
con gur ations which are eventualy mapped into A, i.e., the collection of all con gur ations b suchthat b 62A
but “b 2 A for somepositive integer k.

For explicit computations of the attractor basinsof a large number of one-dimensionalCAs seeWuenshe
and Lesser(1992). Someof the pictures are quite pretty, and make nice T-shirts.

There is one charmingly-named conceptwhich is, sofar as| know, only applied to CAs (among dynamical
systems!).

De nition 29 (Garden of Eden) A con guration that can only occur as an initial condition is a Garden
of Eden. That is, s is a Garden of Edeni, 8s’ sY6 s.

The existenceof Gardens of Eden has important implications for the computational capacities of cellular
automata, including their ability to support self-repraoduction (Moore 1970).

All the conceptsl've de ned treat ead con guration asa point in the CA's state space. CA dynamics,
thus de ned, doesnot represert spatial structure in any explicit or even comprehensibly-implicit way. There
is an alternative way of treating a CA as a dynamical system which does, where the state spaceconsists,
somewhatparadoxically, not of individual con gurations but of setsof con gurations (Hansonand Crutch eld
1992; Hanson 1993; Crutch eld and Hanson 1993b). This alternative CA dynamics is, at is happens, the
spatial version of computational mecanics.
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Chapter 9

Domains and Particles: Spatial
Computational Mec hanics

People notice patterns when they look at CAs, though whether this says more about what CA are apt to
do, or what peoplelike to look at, is a nice question. Two very common kinds of patterns noted in CAs
are domains| patches of space-timewhere everything looks the same,where some\texture" is repeated
overand over| and particles, localized blobuleswhich propagate acrossthe lattice (Hansonand Crutch eld
1992). A review of the literature indicates that particles are generally felt to be about the most interesting
things in CAs 1. Part of the reasonfor this is that propagating blobulesare obsenedin real physical systems,
wherethey canbevery important (Manneville 1990;Crossand Hoherberg 1993; Winfree 1980;Winfree 1987;
Fedorova and Zeitlin 2000; Infeld and Rowlands 1990). Sometimes,especially in condensedmatter physics,
they are called \defects," but somepeople (and elds) prefer more P.C. names,like \coherent structures,"
\solitons" or \organizing certers". An analogy with Conway's Game of Life (Poundstone 1984) givesthem
the name \gliders," which I'll avoid?. Many people have long suspected that particles and domains are
emergen structures. A generaltheoretical analysis (Hanson 1993), supplemered by a comparatively small
number of explicit calculationsin particular cases(Hanson and Crutch eld 1997) shows that this is true.
The burden of this chapter is to expound the theory | just merntioned, the \pure-space" computational
mechanics of cellular automata of Hanson and Crutch eld. This is a method for analyzing particles and
domains in one-dimensionalCAs in terms of regular languagesand the states of machines assaiated with
them.2 The theory employs causal states that specify only the spatial structure of CA con gurations,
obtained by treating one axis of the CA lattice as though it were the time axis. Problems about CA
dynamics can be posedin the theory, and indeedit has somevery powerful tools for solving such problems,
but dynamics are described by the CA ensenble evolution operator  of the previous chapter, and further
objects constructed from it, and not in terms of causal states. It also only works in one dimension, since
both the automata theory and the machine-reconstruction techniquesit employs apply only to well-ordered
sequence®f symbols. Within theselimits, howewer, spatial computational medanicsis extremely powerful,
and proved essetial, for instance,in understanding how computation can be embeddedin cellular automata,
and even ewlve Darwinianly in them (Das, Mitc hell and Crutch eld 1994; Das 1996; Crutch eld, Hordijk
and Mitc hell 2000b; Crutch eld and Mitc hell 1995; Hordijk, Mitc hell and Crutch eld 1998; Hordijk 1999).

1A very partial list would include: Burks 1970; Berlekamp, Conway and Guy 1982; Peyrard and Krusk al 1984; Grassberger
1983; Boccara, Nasser and Roger 1991; Boccara and Roger 1991; Boccara 1993; Aizawa, Nishikawa and Kaneko 1991; Park,
Steiglitz and Thurston 1986; Wolfram 1986; Wolfram 1994; Lindgren and Nordahl 1990; Crutc h eld and Mitc hell 1995; Yunes
1994; Eloranta 1993; Eloranta 1994; Eloranta and Nummelin 1992; Manneville, Boccara, Vichniac and Bidaux 1990; Andre,
Bennett and Koza 1997; Hanson and Crutc h eld 1992; Hanson 1993; Hanson and Crutc h eld 1997; Eppstein ongoing.

2A particle, in this sense,is not the same as a particle in the senseof interacting particle systems (IPSs) (Grieath 1979;
Liggett 1985) or lattice gases(Rothman and Zaleski 1997). The particles of an IPS or the coherent structures that emerge in
lattice gasesmay be particles this sense,however.

SRegular languages and automata are explained in App endix A.4.
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The next chapter constructs a fully spatio-temporal, multi-dimensional computational mecdhanics, containing
one-dimensionalspatial computational mechanics as a special case;the rest of this chapter expounds the
basics,and a particular application, of the latter theory, to give an idea of what can be accomplishedeven
without the full dynamical treatment.

9.1 Domains

De nition 30 (Domain) (Hanson and Crutch eld 1992) A regular domain  of a CA  is a process
language,representing a set of spatial lattice con gur ations, with the following properties:

1. Temporal invariance (or periodicity): is mapped onto itself by the CA dynamic; i.e., P = for
some nite p. (Recall that takessetsof lattice con gur ations into sets of con gur ations and that a
formal language,suchas , is a setof con gur ations.)

2. Smtial homayeneity: The processgraph of each temporal iterate of is strongly connected. That is,
there is a path between every pair of statesin M (') for all |. (Recall that M (L) is the minimal DFA
which recognizesthe languageL .)

The setof all domainsof a CA  isdenoted =f 0 L:::; ™ g wheem=j j.

According to the rst property | temporal invariance or periodicity | a particular domain ' consists
of p temporal phasesfor somep  1;i.e., =15 il;.:::; L 10, suchthat 'l = (+ymodp- Herepis
the temporal periodicity of the domain ', denoted T( ').

Each of the temporal phases ; of adomain ! is represered by a processgraph M ( }) which, according
to the secondproperty (spatial homogeneiy), is strongly connected. Each of theseprocessgraphs consistsof
a nite number of states. Denote the k'" state of the j'" phaseof ' by |, , suppressingthe M () notation
for concisenessWrite the number of statesin a given phaseas S( J')

The procesggraphsof all temporal phases J' of all domains ' canbe connectedtogether and transformed
into a nite-state transducer, called the domain transduer, that readsin a spatial con guration and outputs
various kinds of information about the sites. (The construction is given in, for example, Crutch eld and
Hanson (1993b).) Variations on this transducer can do useful recognition tasks. For example, all transitions
that were in domain ]'s processgraph are assignedoutput symbol D, indicating that the input symbol
being read is \participating” in a domain. All other transitions in the transducer indicate deviations from
the sites being in a domain. They can be assigneda unique output (\w all*) symbol w 2 ij‘g that labels
the kind of domain violation that has occurred. The resulting domain transducer can now be usedto Iter
CA lattice con guration, mapping all domain regularities to D and mapping all domain violations to output
symbols w that indicate domain walls of various kinds.

Il call a phaseof a domain (spatially) periodic when the processgraph consistsof a periodic chain of
states, with a single transition between successie states in the chain. That is, as one moves from state
to state, an exactly periodic sequenceof statesis encourtered and an exactly periodic sequenceof symbols
from is encourtered on the transitions. The spatial periodicity of a periodic phaseis simply S( ). Il
call a domain periodic when all its phasesare periodic. We'll only deal with periodic domains here, for the
following reason. It turns out that for such domains all of the spatial periodicities S( }) at eac temporal
phaseare equal. Thus, we can speak of the spatial periodicity S( ') of a periodic domain . This property,
in turn, is certral to the proof of the upper bound on the number of particle interaction products.

Lemma 20 (Perio dic Phase Implies Perio dic Domain) If a domain " hasa periodic phase,then the
domain is periodic, and the spatial periodicities S( |) of all its phases j;j = 0;:::;p 1; are equal.

Proof. Seethe Appendix. ‘
Thus, the number of statesin the processgraph represerting a particular temporal phase | is the same
forallj 2 f1;:::;T( ")g, andit is, in fact, S( ).
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Finally, there is a larger classof cyclic domains whoseprocessgraphs consistof a periodic chain of states:
asone movesfrom state to state an exactly periodic sequenceof statesis seen.Note that this classincludes
more than periodic domains, which are obviously cyclic. It includesdomainsin which betweentwo successie
states in the chain there are multiple transitions over . (SeeCrutch eld and Hanson (1993b) for a CA
exhibiting two such cyclic domains.) Based on our experiencewe conjecture that Lemma 20 also holds for
cyclic domains. If this is so, most of the following results, and in particular the upper bound theorem, would
hold for this larger class.

Conjecture 1 (Spatial Perio dicities of Cyclic Domains) For any cyclic domain I, the spatial peri-
odicities S( ;) of all its phases ;;j = 0;:::;p 1; are equal.

9.2 Particles

When domain violations form a spatially localized ( nite width), temporally periodic boundary betweentwo
adjacert domains, they are called particles.

De nition 31 A particle isasetf 0; 1;:::; P lgof nite-width words 1 over , called wedges such
that

( i O) - (i+1) modp O; (9.1)
for some nite pand and °2

Sincea particle is a bounded structure, it doesnot have a spatial periodicity. \P eriodicity of a particle"
therefore always meanstemporal periodicity.

Since these particles are temporally periodic, we can view the appearanceof wedge | as the particle
beingin it's jth phase The kth symbol in the wedge'sword is denoted . The state in which the domain
transducer nds itself after reading the kth symbol  in the wedge I is denoted g( 1)

Now I'll introduce an important but subtle distinction. The particle period p referred to above | the
surface periodicity | is assaiated with the repetition over time of the wedge words as obsened in the
raw space-timebehavior sg;s;1;S2;:::. It turns out, as will becomeclear, that particles have an internal
periodicity that may be somemultiple of the surface periodicity p. The internal periodicity | the one of
actual interest here| though, is the periodicity seenby the various phasesof the bordering domains.

De nition 32 A particle 's intrinsic periodicity P( ) is the periodicity of the set of transduer-state se-
quenes geneated when reading a particle's wedges. For wedge | = {::: | the state seguene q( ) :::
q( 1) is geneated in the transdu@r. Denote this state sequen@ by g( /). P( ), then, is the number of
iterations over which the sequene q( ) reappears.

Remark 1. P( ) is an integer multiple of 's apparert periodicity.

Remark 2. A simple illustration of the need for intrinsic, as opposedto merely surface, periodicity is
provided by the particles of ECA 54. SeeFigure 9.4(b) and the accomparying text in Section9.5.1.

After one period P( ), a particle  will have moved a number d of sitesin the CA lattice. This shift
d in spaceafter one period is called the particle's displa@ment d is negative for displacemerts to the left
and positive for displacemerts to the right. From the particle's periodicity P( ) and displacemen d , its
averagevelocity is simply v = d =P( ).

It doesn't matter whether you look at the wedges,or at the transducer-state labeled wedges the velocity
is the same.

The set of all particles ; ;::: ofaCA isdenotedby P.

Remark 3. We've just de ned temporally periodic particles. There are particles in CAs, such asin ECA
18, which are temporally aperiodic. In this case,onereplacesthe periodicity condition Eqg. 9.1 by one using
the ensenble operator; viz.,

(9= % (9.2)
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9.2.1 Structural Complexit y of a Particle

The precedingde nitions and discussionsuggestthat one can think of particles as having an internal clock
or, in the more general casethat includes aperiodic particles, an internal state, much as the solitary-wave
solutions of cortinuum envelope equations have internal states (Infeld and Rowlands 1990). One can ask
about how much information a particle storesin its states. This is the amount of information that a particle
transports acrossspaceand time and brings to interactions. These considerationslead one to a natural
measureof the amount of structural complexity assaiated with individual particles.

De nition 33 The structural complexity C( ) of a particle is de ned to be

X1 _ :
C()= Pr(a( 1)) log, Pr(a( ')) ; (9.3)

j=0

wherepis 's period and Pr(q( 1)) is the probability of beingin phase | with the state-sequencey( 1).
Remark 1. For the straightforward caseof periodic particles, in which the wedgesand sotheir assaiated
state sequencesre equally probable,

C()=log,P(): (9.4)

Remark 2. The information available to be processedin particle interactions is upper-bounded by the
sum of the individual particle complexities, since this sum assumesindependenceof the particles. As we'll
seeshortly, the information in one particle, conditioned on the other's phase(via the constraints imposed
by the mediating domain) and suitably averaged, determines the information available for processingby
interactions.

9.2.2 Domain Transducer View of Particle Phases

A particle is bounded on either side by two patches of domain. (They could be patches of the same or
dierent domains.) Consider what happens to the domain transducer as it scansacrossthe part of the
lattice cortaining the bounding domains( ' and ) and the particle ( ). It beginsby cycling through the
states of the processgraph of a phase(j ) of the rst bounding domain ( ). It then encourters a symbol that
doesnot belongto the languageof that domain phase,and this then causesa transition out of that process
graph. Each successie symbol of the particle wedgeleadsto additional transmons in the transducer. Finally,
the transducer reaches cells at the beginning of the other bounding domain ( ! ) whereupon it begins to
follow the processgraph of ]0 at someappropriate phasej®. In this way, a particle wedge | corresponds
to a sequencey( 1) of transducer states.
More formally, the transducer maps a particle wedge !, bordered by J' and ]io, to an orderedn tuple
(n=j Ij+ 2) of states
_ D _ , E
Q( ) = a jx)al ')al joxo) (9.5)

where q( };k ) is the transducer state reach on reading symbol };k . Since the transducer-state sequence
is determined by the bounding domain phasesand the actual wedge !, it follows that the mapping from
particle wedgesto state sequencess 1-1. If two particle wedgescorrespond to the samesequenceof states,
then they are the samephaseof the sameparticle, and vice versa.

This represenation of particle phaseswill prove very handy below.

9.3 Interactions

In many CAs, when two or more particles collide they create another set of particles or mutually annihilate.
Sud particle interactions aredenoted + ! | for example. This meansthat the collision of an particle
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Figure 9.1: Interactions betweenan and a particle with domain lying between.

onthe left anda particle on the right leadsto the creation of a particle. Particle annihilation is denoted
+ | ;. There are also unstable walls that can spontaneously decay into particles. This is denoted
! + , for example.

Often, the actual product of a particle interaction dependson the phases I and ¥ in which the inter-
acting particles are at the time of collision. In such a case,there can be more than oneinteraction product
for a particular collision: e.g.,both + ! and + ! ; canbeobsened.

The set of a CA's possible particle interactions is denoted I. The complete information about a CA's
domains , particles P, and particle interactions | can be summarizedin a particle catalog. The catalog
forms a high-level description of the CA's dynamics. It is high-level in the senseof capturing the dynamics
of emergen structures. The latter are objects on a more abstract level than the original equations of motion
and raw (uninterpreted) spatial con gurations of site values.

9.4 Bounding the Num ber of Interaction Pro ducts

Restricting ourselvesto particle interactions with just two colliding particles | and ,say | we'll now
derive an upper bound on the number n.  of possibleinteraction products from a collision betweenthem.
(SeeFigure 9.1 for the interaction geometry) In terms of the quantities just de ned, the upper bound,
stated as Theorem 17 below, is:

P(I)P() v
TCHS( 1 60
where v=v v >0and 'isthe domainin betweenthe two particles beforethey collide. Note that if

v=0,thenn. = Otrivially .
For simplicity, let's assumethat v=v v 0. This simply meansthat particle liesto the left of
and they move closerto eac other over time, asin Figure 9.1.

This section provesthat Eq. 9.6 is indeed a proper upper bound. The next section givesa number of
examples,of both simple and complicated CAs, that show the bound is and is not attained. Thesehighlight
an important distinction betweenthe number of possibleinteractions (i.e., what can enter the interaction
region) and the number of unique interaction products (i.e., what actually leavesthe interaction region).

To establish the bound, we'll need some intermediate results. The rst three come from elemenary
number theory. Recall that the least common multiple lcm(a;b) of two integers a and b is the smallest
number c that is a multiple of both a and b. Similarly, the greatest common divisor gcd(a;b) of two integers
a and b is the largest number c that divides both a and b.
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Prop osition 1 (Burton 1976, Theorem 2.7) gcd(ca;ch) = ¢ gcd(a;b); ¢c> O.
Prop osition 2 (Burton 1976, Theorem 2.8) gcd(a; b) Icm(a; b) = ab

Lemma 21 lem(ca;ch = clem(a;b); ¢> 0.

Proof. Using Propositions 1 and 2, it follows that

cacb
gcd(ca;cb
ab
07
gcd(a; b)
clem(a;b) :

Ilcm(ca;ch (9.7)

QED.
Now we can start talking about particles.

Lemma 22 (Particle Perio dicity Is a Multiple of Domain Perio dicity) The intrinsic periodicity
P( ) of a particle is a multiple of the temporal periodicity T( ') of either domain ' for which is a
boundary. That is,

P()=m;T("); (9.8)
for some positive integer m; that dependson  and .

Proof. At any given time, a con guration cort;(\)ining the particle  consistsof a patch of the domain ',
a wedgebelongingto , and then a patch of ', in that order from left to right. (Or right to left, if that
is the chosenscandirection.) Fix the phaseof to be whatever you like | ! say. This determinesthe
phasesof | for the following reason. Recall that, being a phaseof a particle, ' correspondsto a unique
sequenceQ( 1) of transitions in the domain transducer That sequencestarts in a particular domain-phase
state ]I,k and endsin another domain-phasestate ,oko So, the particle phase ' occursonly at thosetimes
when 'isinits j!" phase. Thus, the temporal periodicity of must be an integer multiple of the temporal
periodicity of . By symmetry, the sameis alsotrue for the domain i’ to the right of the wedge. QED.

Corollary 5 (Phase Restriction) Given that the domain ' is in phase J' at sometime step, a particle
forming a boundary of ' can only be in a fraction 1=T( ') of its P( ) phasesat that time.

Proof. This follows directly from Lemma 22.

Remark. Here is the rst part of the promised restriction on the information in multiple particles.
Considertwo particles and , separatedby a domain °. Naively, we expect to contain log, P( ) bits of
information and , log, P( ) bits. Giventhe phaseof , however, the phaseof °is xed, and therefore the
number of possiblephasesfor is reducedby a factor of 1=T( °). Thus the number of bits of information
in the - pair is at most

POPO) .

) (9.9)

log, P( )+ log, P( ) log, T( °) = log,
The argumert works equally well starting from

Lemma 23 For any two particles and , the quantity Icm(P( );P( )) Vv is a non-negative integer.
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Proof. We know that the quantity is non-negative, sincethe least common multiple alwaysis and v is so
by construction. It remainsto show that their product is an integer. Let k = lem(P( );P( ))=P( ) and
k =lem(P( );P( ))=P( ); theseare integers. Then

d 4
P() PC)
kd kd

lem(P( );P( )
When multiplied by lem(P( );P( )) thisisjust k d k d , which is an integer. QED.

Lemma 24 (Displacemen ts Preserving Relativ e Phase) When the distance d between two approach-
ing particles and , in phases ! and !, respac;toively, is increased bylem(P( );P( )) v sites, the original
con gur ation | distance d and phases ! and ! | recurs after Icm(P( );P( )) time steps.

Proof. From the de nition of lcm(a;b) it follows directly that lcm(P( );P( )) is a multiple of P( ). Thus,

(#em( P )P (M modP( ) = | . (9.10)
and the particle hasreturned to its original phase. Exactly parallel reasoningholds for the particle. So,
after lem(P( );P( )) time stepsboth and arein the samephases | and i° again. Furthermore, in
the sameamourt of time the distance betweenthe two particles has decreasedby Icm(p ;p ) v, which is
the amount by which the original distance d wasincreased. (By Lemma 23, that distanceis an integer, and
sowe can meaningfully increasethe particles' separation by this amourt.) Thus, after Icm(P( );P( )) time
stepsthe original con guration is restored. QED.

Lemma 25 (Phase-Preserving Displacemen ts and Spatial Perio dicit y) If ' is the domain lying
between two particles and , then the ratio

_ lem(P( );P( ) v
S( N

(9.11)

is an integer.

Proof. Suppose,without lossof generality, that the particles beginin phases © and ©°, at somesubstartial
distance from ead other. We know from the previous lemma that after a time Icm(P( );P( )) they will
have returned to those phasesand narrowed the distance betweenead other by lcm(P( );P( )) v cells.
What the lemma assertsis that this displacemern is someinteger multiple of the spatial periodicity of the
intervening domain . Call the nal distance betweenthe particles d. Note that the following does not
depend on what d happensto be.

Each phaseof eac particle correspondsto a particular sequenceof transducer states| those assaiated
with reading the particle's wedgefor that phase. Reading this wedgefrom left to right (say), we know that
Q( % must end in some phase-stateof the domain '; call it io;o- Similarly, Q( °) must begin with a
phase-stateof ', but, sinceevery part of the intervening domain is in the samephase,this must be a state
of the same phase }; call it {);k. In particular, consistencyrequiresthat k be the distance between the
particles modulo S( ). But this is true both in the nal con guration, when the separation between the
particles is d, and in the initial con guration, whenit isd+ Icm(P( );P( )) v. Therefore

d+lem(P( );P()) v
lem(P( );P()) v

d (modS( "))
0 (modS("):

Thus, lem(P( );P( )) v is an integer multiple of the spatial period S( ') of the intervening domain ‘.
QED.
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Remark. It is possiblethat lcm(P( );P( )) v = 0, but this doesnot a ect the subsequeh argumert.
Note that if this is the case,then, since the least common multiple of the periods is at least 1, v = 0.
This, in turn, implies that the particles do not, in fact, collide and interact, and sothe number of interaction
products is simply zero. The formula givesthe proper result in this case.

The next result follows easily from Proposition 1 and Lemma 22.

Lemma 26 (Relation of the Perio ds of Particles Bounding a Common Domain) If ' is the do-
main lying between particles and , then

ged(P( );P( ) = T( Hgedmi ;m i) : (9.12)

Proof. Apply Lemma 21:

gedm; T( ');m iT( ')
T( gedmi ;m j):

ged(P( ):P( )

QED.
With the above lemmasthe following theorem can be proved, establishingan upper bound on the number
of possiblepatrticle interaction products.

Theorem 17 (Hordik's Rule) The number n; of products of an interaction between two approaching
particles and with a domain ' lying between is at most

P(IP() v,
TOOS(D ©19
Proof. First, let's shaw that this quartity is an integer. Use Proposition 2 to get
P(I)P() v _gedP( );P( Dlem(P( );P()) v .
TCOS( ) T( S ) ’ ©19
and then Lemma 25to nd that
P(OP() v _gedP( );P()r .
T(Os(H . Ty 619
and nally Lemma 26 to show that
P()P() v _ T(')gedmi ;m i)r
T(HS(h) T( 1)
= rgedmi;m ) ; (9.16)

which is an integer.

Second,assumethat, at someinitial time t, the two particles are in somearbitrary phases | and i°
respectively, and that the distance betweenthem is d cells. This con guration givesrise to a particular
particle-phase combination at the time of collision. Since the global update function is deterministic, the
combination, in turn, givesoneand only oneinteraction result. Now, increasethe distance betweenthe two
particles, at time t, by onecell, while keepingtheir phases xed. This givesrise to a di erent particle-phase
combination at the time of collision and, thus, possibly to a di erent interaction result. We can repeat this
operation of increasingthe distance by onecell Icm(P( );P( )) v times. At that point, however, we know
from Lemma 24 that after lcm(P( );P( )) time stepsthe particles nd themselvesagain in phases | and
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i’ ata separation of d. That is, they are in exactly the original con guration and their interaction will
therefore also produce the original product, whatever it was.

Starting the two particles in phases | and I’ the particles go through a fraction 1=gcd(P( );P( ))
of the possibleP( )P( ) phasecombinations, over lcm(p ;p ) time steps,beforethey start repeating their
phasesagain. So, the operation of increasingthe distance betweenthe two particles by one cell at a time
needsto be repeated for gcd(P( );P( )) dierent initial phasecombinations. This way all possible phase
combinations with all possibledistances(modulo lcm(P( );P( )) V) are encourtered. Each of these can
give rise to a di erent interaction result.

From this one seesthat there are at most

gedP( );P( Dlem(P( );P( ) v=P()P() v (9.17)

unique particle-domain-particle con gurations. And so, there are at most this many di erent particle inter-
action products, giventhat is many-to-one. (Restricted to the homogeneousguiescen ( = 0 ) domain
which has T() = 1 and S() = 1, this is the result, though not the argument, of Park, Steiglitz and
Thurston (1986).)

However, given the phases | and i° the distance betweenthe two particles cannot always be increased
by an arbitrary number of cells. Keeping the particle phases | and i’ xed, the amourt d by which the
distance betweenthe two particles can be increasedor decreaseds a multiple of the spatial periodicity S( ')
of the intervening domain. The argumert for this is similar to that in the proof of Lemma 25. Consequetly,
ofthelcm(P( );P( )) v increasesn distancebetweenthe two particles, only afraction 1=S( ') are actually
possible.

Furthermore, and similarly, not all arbitrary particle-phase combinations are allowed. Choosing a phase

I forthe particle subsequetly determinesthe phase J' of the domain ' for which  forms oneboundary.
From Corollary 5it then followsthat only afraction 1=T( ') of the P( ) phasesare possiblefor the particle
which forms the other boundary of .

Adjusting the number of possible particle-domain-particle con gurations that can give rise to di erent

interaction products accordingto the above two obsenations results in a total number

POP() v
T(HS(

of dierent particle-phase combinations and distancesbetweentwo particles and . Putting the pieces
together, then, this number is an upper bound on the number n. of di erent interaction products. QED.
Remark 1. As we'll seein the examples,on the one hand, the upper bound is strict, sinceit is saturated
by someinteractions. On the other hand, there are alsointeractions that do not saturate it.
Remark 2. We saw (Corollary 5, Remark) that the information in a pair of particles and , separated
by a patch of domain ', is at most

(9.18)

POPO)
log, TN (9.19)
bits. In fact, Hordijk's Rule implies a stronger restriction. The amount of information the interaction carries
about its inputs is, at most, log, n. bits, sincethere areonly n. con gurations of the particles that can
lead to distinct outcomes. If the number of outcomesis lessthan n. , the interaction e ectiv ely performs
an irreversible logical operation on the information contained in the input particle phases.

Remark 3. This is \Hordijk's Rule" becauseWim Hordijk wasthe rst personto notice that, empirically,
it was valid, and to useit in analyzing cellular automata. This proof is joint work with  Wim and Jim
Crutch eld.
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9.5 Examples
9.5.1 ECA 54 and Intrinsic Periodicit y

Figure 9.2 shows the raw and domain-transducer ltered space-timediagrams of ECA 54, starting from a
random initial con guration. First, let's review the results of Hansonand Crutch eld (1997) for ECA 54's
particle dynamics.

Figure 9.3 shows a space-timepatch of ECA 54's dominant domain , alongwith the domain transducer
constructed to recognizeand lter it out, aswasdoneto produce Figure 9.2(b).

Examining Figure 9.2 shaws that there are four particles, called , , *,and . The rst two have
zero velocity; they are the larger particles seenin Figure 9.2(b). The particles have velocities 1 and 1,
respectively. They are seenin the gure asthe diagonally moving \ligh t" particles that mediate betweenthe
\heavy" and particles.

The analysisin Hansonand Crutch eld (1997)identi ed 7 dominant two- and three-patrticle interactions.
Let's now analyzejust one: the * + ! interaction to illustrate the importance of a particle's intrinsic
periodicity.

Naive analysiswould simply look at the space-timediagram, either the raw or ltered onesin Figure 9.2,
and conclude that these particles had periodicities P( *) = P( ) = 1. Plugging this and the other data
| T() =2,S() =4,and v=2]| leadsto upper bound n. = 1=4! This is patently wrong; it's not
even an integer.

Figure 9.4 givesthe transducer- ltered space-timediagram forthe * and  particles. The domain is
Itered out, asabove. In the Itered diagramsthe transducer state reached on scanningthe particle wedge
cellsis indicated.

From the space-timediagrams of Figure 9.4(b) one notes that the transducer-state labeled wedgesfor
ead particle indicate that their intrinsic periodicities are P( *) = 2and P( ) = 2. Then, from Theorem
17,n. = 1. That is, there is at most one product of these particles' interaction.

Figure 9.5 givesthe transducer- ltered space-timediagram for the * + ! interaction. A complete
survey of all possible * initial particle con gurations shows that this is the only interaction for these
particles. Thus, the upper bound is saturated.

95.2 An Evolved CA

The secondexample for which we test the upper bound is a CA that was ewlved by a genetic algorithm to
perform a classof spatial computations: from all random initial con gurations, synchronize within a speci ed
number of iterations. This CA is sync, Of Hordijk, Mitchell and Crutch eld (1998): a binary, radius-3 CA.
The 128-bit look-up table for sync, is givenin Table 9.1.

Here we're only interested in locally analyzing the various pairwise particle interactions obsened in

sync, - It turned out that this CA useda relatively simple set of domains, particles, and interactions. lIts

particle catalogis givenin Table 9.2.

As one example, the two particles and and the intervening domain  have the properties given in
Table 9.2. From this data, Theorem 17 tells us that there is at most one interaction product:

1
4 2 3

n. =
’ 21

=1 (9.20)

The single obsened interaction betweenthe and particles is shown in Figure 9.6. As this space-time
diagram shows, the interaction createsanother particle, i.e., + ! . An exhaustive survey of the 8
(= 4 2) possibleparticle-phasecon gurations showsthat this is the only interaction for thesetwo particles.
Thus, in this case,Hordijk's Rule again givesa tight bound; it cannot be reduced.
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Figure 9.2: (a) Raw space-timediagram and (b) Itered space-timediagram of ECA 54 behavior starting
from an arbitrary initial con guration. After Hansonand Crutch eld (1997).
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Figure 9.3: (a) Space-timepatch of ECA54's primary domain . (b) The transducer that recognizes and
deviations from it. After Hansonand Crutch eld (1997).

Look-up Table (hexadecimal)

syncy F8A19CE6B65848EA
D26CB24AEB51C4A0

par ent CEB2EF28C68D2A04
E341FAE2E7187AES8

Table 9.1: Lookup tables (in hexadecimal)for sync, and parent. TO recover the 128-bit string giving the
CA look-up table output bits s+ , expand ead hexadecimaldigit (the rst row followed by the secondrow)

to binary. The output bits si+; are then givenin lexicographic order starting from the all-Os neighborhood
at the leftmost bit in the 128-bit string.
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Figure 9.4: The transducer- ltered space-timediagramsfor the * and  particles. (a) The raw space-time
patchescortaining the particles. (b) The samepatcheswith the Itered out. The cellsnotin aredenoted
in black; thosein in white. In the Itered diagramsthe transducer state reached on scanningthe particle
wedgecellsis indicated. After Hansonand Crutch eld (1997).

Figure 9.5: The transducer- Itered space-timediagramsfor the * + ! interaction. After Hansonand
Crutch eld (1997).
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sync, Particle Catalog

Domains
Name Regularlanguage T() S()
0*0 , 1%1 2 1
Particles P
Name  Wall P d \;
i 4 -1 -1/4
i1 2 -1 -1/2
i 8 -1 -1/8
i 2 0 0
Interactions |
Type Interaction Interaction
React + | +
React + ! + |
React + ! + |
Table 9.2: The particle catalog of sync,. j,j 2 f0;1g, indicates the two temporal phasesof domain .

Figure 9.6: The interaction betweenan anda particle in gync, .
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parent Particle Prop erties

Domain T S
2 1

Particle P d v
8 2 1/4
2 -3 -3/2

Table 9.3: Properties of two of parent 'S particles.

9.5.3 Another Evolved CA

The third, more complicated exampleis alsoa CA that was ewolved by a genetic algorithm to syndironize.
This CAis parent Of Crutch eld, Hordijk and Mitc hell (2000b). It too is a binary radius-3 CA. The 128-bit
look-up table for parent Wasgivenin Table 9.1.

Here the two particles and and the intervening domain  have the properties given in Table 9.3.
Note that this is the samedomain asin the precedingexample.

From this data, Theorem 17 now says that there are at most:

821
— 4 _
n. = =14 9.21
=g (9:21)
interactions.

Of these 14 input con gurations, it turns out seweral give rise to the sameproducts. From a complete
survey of --  con gurations, the result is that there are actually only 4 di erent products from the +
interaction; theseare:

+ ! :

+ !

+ 12
+ ! +

They are shown in Figure 9.7.

This example servesto highlight the distinction betweenthe maximum number of interaction con gura-
tions, asbounded by Theorem 17, and the actual number of unique products of the interaction. We'll come
badk to this.

9.54 ECA 110

In the next example, we test Theorem 17 on one of the long-appreciated \complex" CA, elemenary CA
110. As long ago as 1986, Wolfram (Wolfram 1986, Appendix 15) conjectured that this rule is able to
support universal, Turing-equivalent computation (replacing an earlier dictum (Wolfram 1984b,p. 31) that
all elemenary CA are\to o simple to support universalcomputation”). While this conjectureinitially excited
little interest, in the last few yearsit haswon increasingacceptancein the CA researct community. Though
to date there is no published proof of universality, there are studiesof its unusually rich variety of domainsand
particles, one of the most noteworthy of which is McIntosh's work on their tiling and tessellation properties
(McIntosh 2000). Becauseof this CA's behavioral richness,l won't presert its complete particle catalog and
computational-mechanical analysis here; rather seeCrutch eld and Shalizi (2001). Instead, I'll look at a
single type of reaction where the utilit y of Hordijk's Rule is particularly notable.

Consideronedomain, labeled ©, and two particles that move through it, called and (Crutcheld and
Shalizi 2001). (This  particle is not to be confusedwith the of the previous examples.) ©is ECA 110's
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Figure 9.7: The four di erent (out of 14 possible)interaction products for the + interaction.

Figure 9.8: The particle of ECA 110: The space-timepatch showvs two complete cyclesof particle phase.

\true vacuum": the domain that is stable and overwhelmingly the most prominent in space-timediagrams
generatedfrom random samplesof initial con gurations. It hasa temporal period T( °) = 1, but a spatial
period S( °) = 14. The particle hasa period P( ) = 15, during the courseof which it movesfour stepsto
the left: d = 4. The particle, nally , hasa period P( ) = 42, and movesd = 14 stepsto the left during
its cycle. This data givesthe particle a velocity of v = 4=15andthe particle v = 1=3.

Naively, one would expect to have to examine 630 (= P( )P( ) = 15 42) dierent particle-phase
con gurations to exhaustall possibleinteractions. Theorem 17, however, tells us that all but

(15)@42)(  5)
(14)(1)

=3 (9.22)

of thoseinitial con gurations are redundart. In fact, an exhaustive seard shownsthat there are exactly three
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Figure 9.9: The particle of ECA 110: The space-timediagram showvs one complete cycle of particle phase.

distinct interactions:

! + 3Wright
! + 4Wright ;
| .

Here, , w,ignt, and are additional particles generatedby ECA 110. These interactions are depicted,
respectively, in Figures 9.11,9.10,and 9.12.

The wigne particle is somewhatunusual in that seweral can propagate side by side, or even constitute
a domain of their own. There are a number of such \extensible" particle families in ECA 110 (Crutch eld
and Shalizi 2001).

Finally, obsene that, though all these particles are wide and have long periods, and move through a
complicated badkground domain, Hordijk's Rule is not just obeyed, but givesthe exact number of interaction
products. I'll comebadk to what signi cance this might have in the conclusionto this chapter.



Figure 9.10: The reaction

+
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Figure 9.11: The reaction

+

+ 3wrignt in ECA 110.
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Figure 9.12: The reaction

+

in ECA 110.
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9.6 Conclusion

9.6.1 Summary

The original interaction product formula of Park, Steiglitz and Thurston (1986) is limited to particles prop-
agating in a completely uniform background; i.e., to a domain whosespatial and temporal periods are both
1. When comparedto the rich diversity of domains generatedby CAs, this is a considerablerestriction,
and so the formula does not help in analyzing many CAs. We've generalizedtheir result and along the
way establisheda number of properties of domainsand particles | structures de ned by CA computational
mechanics. The examplesshowved that the upper bound is tight and that, in complex CAs, particle interac-
tions are substartially lesscomplicated than they look at rst blush. Moreover, in deweloping the bound for
complex domains, the analysis elucidated the somewhatsubtle notion of a particle's intrinsic periodicity |
a property not apparent from the CA's raw space-timebehavior: it requiresrather an explicit represeration
of the bordering domains' structure.

Understanding the detailed structure of particles and their interactions movesus closerto an engineering
discipline that would tell onehow to designCA to perform a wide range of spatial computations using various
particle types, interactions, and geometries. In a complemerary way, it also brings us closerto scierti ¢
methods for analyzing the intrinsic computation of spatially extended systems(Chapter 10).

9.6.2 Open Problems

The foregoinganalysismerely scratchesthe surfaceof a detailed analytical approach to CA patrticle \ph ysics":
Each CA update rule speci es a microphysicsof local (cell-to-cell) spaceand time interactions for its universe;
the goal is to discover and analyze those emergen structures that cortrol the macroscopicbehavior. We'll
return to that problem in the next chapter, but rst Il list a few of questionsraised by theseresults.

It would be preferableto directly calculate the number of products coming out of the interaction region,
rather than (as here) the number of distinct particle-domain-particle con gurations coming into the inter-
action region. We beliewve this is eminertly achievable, given the detailed represenations of domain and
particles that are entailed by a computational medcanics analysis of CAs.

Two very desirableextensionsof theseresults suggestthemseles. The rst isto gofrom strictly periodic
domains to cyclic (periodic and \c haotic") domains and then to generaldomains. The principle dicult y
hereis that Proposition 20 plays a crucial role in the current proof, but we do not yet seehow to generalizeits
proof to chaotic (positive entropy density) domains. The secondextensionwould be to incorporate aperiodic
particles, such as the simple one exhibited by ECA 18 (Crutch eld and Hanson 1993a). We suspect this
will prove considerably more di cult than the extensionto cyclic domains: it is not obvious how to apply
notions like \particle period" and \v elocity" to these defects. A third extension, perhaps more tractable
than the last, is to interactions of more than two particles. The geometry and combinatorics will be more
complicated than in the two-particle case,but we conjecture that it will be possibleto establish an upper
bound on the number of interaction products for n particle interactions via induction.

Doesthere exist an analogouslower bound on the number of interactions? If so, when do the upper and
lower bounds coincide?

In solitonic interactions the particle number is presened (Peyrard and Kruskal 1984; Aizawa, Nishikawa
and Kaneko 1991; Park, Steiglitz and Thurston 1986; Steiglitz, Kamal and Watson 1988; Ablowitz, Kruskal
and Ladik 1979). What are the conditions on the interaction structure that characterize solitonic inter-
actions? The class of soliton-like particles studied in Park, Steiglitz and Thurston (1986) possessa rich
\thermo dynamics" closely analogousto ordinary thermodynamics, explored in detailed in Goldberg (1988).
Do these results generalizeto the broader class of domains and particles, as the original upper bound of
Park, Steiglitz and Thurston (1986) does?

While the particle catalog for ECA 110 is not yet provably complete, for every known pair of particles
the number of distinct interaction products is exactly equal to the upper bound given by Hordijk's Rule.
This is not generally true of most of the CAs we have analyzed and is especially suggestiwe in light of the
widely-accepted conjecture that the rule is computation universal. We suspect that ECA 110's fullness or
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behavioral exibilit y is connectedto its computational power. (Cf. Remark 2 to Theorem 17.) Howewer,
we have yet to examine other, computation universal CA to seewhether they, too, saturate the Hordijk's
Rule bound. One approach to this question would be to characterize the computational power of systems
employing di erent kinds of interactions, asis donein Jakubowski, Steiglitz and Squier (1997) for computers
built from interacting (continuum) solitary waves.
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Chapter 10

Spatio-temp oral Computational
Mec hanics

Not in the spaceswe know, but betwesn them, They walk sereneand primal, undimensioned
and to us unseen.
| Abdul Alhazred (c. 750)

10.1 The Diculties of Higher Dimensions

It may not have escaped the reader'sattention that, while Chapter 9 spoke freely of \hidden states" in a CA,
| was quite vagueabout just what those states were, and how they related to the hidden states constructed
in the previous chapters. It would be nice to say that those states are causalstates, in somesense but it's
not clear what that might be. It's hard to seein what sensethe value at one point in the lattice is causedby
the valuesof its neighbors at that time, for instance. Sothe justi cation of the domain-and-particle methods
has beensomewhatpragmatic | you can think of the CAs as doing things to regular languages,and those
languagescan be represeried by machineswith states, and the results are fruitful | but alsounsatisfactory.

Now, of course, CA are dynamical systems(we've beenover that at somelength in Section 8.2), sowe
could apply computational mechanics to them, at the global level, in a very straightforward manner. The
causal states we'd derive in this way would capture all the patterns relevant to the global evolution of the
CA, and soin somesenseall the information about their spatial structure would be encaded into the global

-machine. On the other hand, that encading would be very hairy indeed, and we'd really like something
where the spatial structure was transparent, just asthe -machine makesthe causal structure transparent.
Sowhat we're looking for are spatially-lo calized states, which we can somehav link up with the statesfrom
spatial computational mecanics of CAs. Our desiredstates should also be causal,in somereasonablesense,
and have the optimality properties to which we've becomeaccustomed.

An obvious rst step is to turn to information theory and automata theory, since they serned us so
well with time-series. Unfortunately, nobody really knows how to work either of those theories in higher
dimensions. Automata theory, in particular, gets really ugly (Lindgren, Moore and Nordahl 1998), and
information theory isn't much better. (SeeEriksson and Lindgren 1987; Lempel and Ziv 1986; Andrienko,
Brillian tov and Kurths 2000; Feixas, del Acebo, Bekaert and Shert 1999; Garncarek and Piasedi 1999;
Piasedki 2000for attempts to extend information theory to elds in two or more dimensions.) That averue
being blocked, a natural secondstep is to look to statistics. The statistical analysis of spatial data is
notoriously dicult in all but the most trivial cases(Ripley 1981; Ripley 1988; Cressie 1993; Grenander
1996). In part this is becausethe proper treatment of spatial stochastic processess also notoriously di cult
(see Schinazi (1999) and Guttorp (1995, ch. 4) for gertle introductions to spatial processesand spatial
statistics, respectively. Gri eath (1979), Liggett (1985) and Guyon (1995) are more advancedtreatments).
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In fact, we are in the uncomfortable position of having to strike out more or lesson our own.

10.2 Global Causal States for Spatial Pro cesses

In what follows, we'll consider, not spatial processesn general, but those whosespace,time and state are
all discrete, and spaceis a regular lattice. While this is a very broad classof processeq it includes all
cellular automata, for instance| it is still alimited one. At the end of this chapter and in the conclusion,
I'll talk about how theseassumptionsmight be relaxed.

We supposethat at ead point in spacecan be in one of a nite number of states, drawn from a nite
alphabet A. Thus, a global con guration is an elemer of AS, whereS is the lattice | either a nite number,
for a nite lattice, or 9 for a d-dimensionalin nite lattice. The global spatial processis a distribution over
sequenceof global con gurations, an ensenble of elemens of AS T, where T = if there is a de nite
starting-time, or = if time extendsin both directions.

We write the random variable for the sequenceof all con gurations up to and including time t as G (t);
]

we call its particular values pasts or histories. The future sequences G (t).
For simplicity, we assumethat the processis invariant under spatial translations (but not necessarilyany
other elemen of the spacegroup).

De nition 34 (Global Causal State) The glokal causal state of a history is the set of all histories which
yield the same conditional distribution of futures. We write the random variable for the glokal causal state

as G (realizations ), and the function from history to causal state as . That is, G= (G), and
0 1 Lo roor 0
(G) = 9j89;, P(G=9)G=9)=P(G=9jG= 9) (10.1)

Note that while global causal states are de ned in a time-invariant manner, they do not necessarilyhave a
time-invariant distribution. In particular, if the global processis non-stationary, the distribution over global
causal states will be non-stationary.

All the properties of normal causalstates, from chapter 4 are inherited.

10.2.1 Why Global States Are not Enough

While in a senseknowing the global causalstate tells us all there is to know about the future of the spatial
process,it is not the ideal represenation of the process'sstructure, for three reasons.

First, there is no explicit represenation of the spatial structure. It is encaded, to be sure, in the global
causalstate, but generally not in any way which is easily comprehendedby human beings. In many CA, for
instance, the presenceor absenceof phase-defectsmakes a great deal of di erence to the dynamics. This
would bere ected by di ering global causalstates, but not in any way which madeit particularly clearwhat
made the di erence.

Second,the number of global causal states is apt to be very large | in the caseof deterministic CA,
roughly on the order of the number of lattice con gurations. (The exact number would depend on the degree
of irreversibility of the update rule.) This is not a particularly compactrepreseration of the spatial process's
structure, nor one which lendsitself easily to calculation.

Third, getting adequatestatistics to empirically estimate the global causalstatesis simply not practical.

For all thesereasons,the global causalstates approac to spatial processeswhile valid, is useless.What
we would like, instead, is someway of factoring or distributing the information contained in the global causal
state acrossthe lattice | of nding local causalstates. It is to this question that we now turn.
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10.3 Local Causal States

A number of dierent ideas have been advanced for how to de ne \lo calities" for purposesof higher-
dimensional information theory and automata theory. Someinvolve looking at larger and larger \blo cks"
of the samebasic shape (Eriksson and Lindgren 1987); others attempt to \scan over" paths in the lattice,
reducing the problem to that of well-ordered series(Feldman 1998). Neither of these quite works (Feldman
1998), so here is another, which seemsto.

10.3.1 Light Cones and Their Equiv alence Classes

Let x = (x%;t) be asinglecell at a singletime, or a point-instant. We de ne the past light-cone of x, denoted

L (x), asall other point-instants (y;s) suchthat s t andjjy xjj < c(t s), wherecis a positive constart
for the system, the maximum speedat which disturbancescan propagate| the \sp eedof light," asit werel

We denote the random valriable for the con guration in the past light cone by L, and its realization by

| . The future light-cone, L (x), is similarly de ned as all those point-instants (¥;s) such that s > t and
ii¥ % < c(s t). It isthe setof point-instants at which changesat x might have an e ect. (SeeFigure
10.1for a schematic.)

As with classical stochastic processesany function on past light-cones partitions the set of them into
equivalence classes,and so assignsthem to e ectiv e states. The obvious analogs of the de nitions and
lemmas about e ectiv e states for time-seriesall apply straight-forwardly, since none of the information-
theoretic argumerts we made rely on having a well-ordered sequenceas the input to the e ectiv e-state
function . We wish to point out, however, a subtlety in the appropriate de nition of prescience.

Denition 35 (Lo cal E ectiv e States) Any partition R of L isan eectivestateclassacell 2R is

an e ectiv e state. When the current past light-cone | is included in the set , we will speak of the process
being in state at that point-instant. Thus, we de ne a function from past light-conesto e ective states:

'L7'TR: (10.2)

A speci ¢ individual past light-cone | 2 L mapsto a specic state 2 R ; the random variable S for the
past mapsto the random variable R for the e ective states.

Remark. We have usedthe samenotation for local e ectiv e states asfor purely temporal e ectiv e states; we
trust this will not causeconfusion, as we shall only be dealing with the local versionsfrom now on.

When we wish to refer to an arbitrary, nite spatio-temporal region, we shall write K. The random
variable for the con guration in K isK.

!
Lemma 27 (Old Country Lemma) For any local e ective state, and any nite region K L, H[K]R]
HIKj L]

Proof : Entirely analogousto the time-seriescase.

De nition 36 (Lo cal Prescience) A local e ective state is prescienti, for any nite space-time region
! . .
K L,H[KjR=H[KjL]

Remark. As with the de nition of presciencein the caseof classical st(?chastic processesthis de nition
avoids having to invoke an entropy which may well be in nite, namely H[L j S].

1By this de nition, a point-instant is in its own past light-cone. This is a slight departure from the standard usage in
relativit y, essenially to accommodate discrete time.
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Figure 10.1: Schematic of the light-cones of a single point-instant, x. Following convertion for CAs, time
runs vertically downward, and the spatial coordinate(s) are horizontal. The grey squaresdenote L (x), the
]

past light-cone of x. The white squaresare its future light-cone, L (x). Note that we include x within its
own past light-cone, resulting in a slight asymmetry betweenthe two cones.
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ILemma 28 (Lo cal Prescience and Conditional Indep endence) For any set of e ective statesR, if
L L L jR, thenR is prescient.

Proof: By Lemma 37, sinceR = (L), the conditional independenceimplies that P(L jL=1)= P(L jR =

(1)) for all |. Thereforethis is true for any K aswell. Hencethe entropy of K conditional on L is equal
to its entropy conditional on R. But this is the de nition of local prescience.QED.

De nition 37 (Lo cal Excess Entrop y) The local exassentropy at x is

P(L=1 (X);L= I (X))

E°(x) = log, —— (10.3)
P(L=1 (x)P(L=1 (x))
De nition 38 (Excess Entrop y Densit y) The exessentropy density, E'°¢, is
S !
Eloc I(L;L) : (10.4)

It is the expectation value of the local exassentropy, E'°°(x).

Remark 1. The proof of the assertionfollows directly from the de nition of mutual information.

Remark 2. Both E'° (x) and E'°c canvary over time, and generally do in non-stationary processesNote
that E'°c is not the averageof E'°(x) over the lattice in any particular realization of the process. Rather,
it is the averageover the ensenble of all realizations. If the two averagescoincide on large lattices, then the
processhas a kind of spatial ergodicity. (Cf. the notion of \brok en ergadicity" in spin glasses(Fischer and
Hertz 1988;Palmer 1989).)

Denition 39 (Lo cal Statistical Complexit y) For a set of e ective statesR , the local statistical com-
plexity a x, written C '°°(R ;x) is

C °(R;x) log, P(R(x) = (1 (x)) (10.5)

De nition 40 (Statistical Complexit y Densit y) The statistical complexity density of a set of local ef-
fective states:

C °°(R) H[R] : (10.6)
It is the expectation value of the local statistical complexity.

Remark. Seethe remarks on the excessentropy density.

10.3.2 The Local Causal States

We adapt the de nition of causalstatesto the useof light conesin the obvious way.

Denition 41 (Lo cal Causal State) The local causal state at x, written L(x), is the setof all past light-
coneswhoseconditional distribution of future light-conesis the sameas that of the past light-cone at x. That
is,

() = 1 PK=KL=1)=PK=KL=1 (x) (10.7)
, 0
8K L;8k (10.8)
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Lemma 29 (Conditional Indep endence of Past and Futur e Light-Cones) The past and future light-
conesare independent given the local causal state.

Proof : By the construction of the local causal state,
PL=1jL=1) = P(L=1]L= ) (10.9)
But L = (L), so,by Lemma 37, !L AL jL. QED.
Theorem 18 (Prescience of Local Causal States) The local causal statesare prescient: 8K,
HIKL] = HIKjL] (10.10)
Proof : Follows immediately from the combination of Lemmas 29 and 28. QED.

Lemma 30 (Lo cal Renemen t Lemma) If R is a prescient set of local e ective states, then R is a
re nement of L, and there is a function h suchthat L = h(Ii?) almost always.

Proof : Identical to the global lemma.
Theorem 19 (Minimalit y of the Local Causal States) For any prescientrival set of states, P,
C () C '°(L) (10.11)

Proof : Identical to the global theorem.

Theorem 20 (Uniqueness of the Local Causal States) If B is prescient, and C °°(®) = C "°°(L),
then there is a function g suchthat R = g(L) almost always.

Proof : Identical to the global theorem, substituting C '°° for C .
Theorem 21 (Lo cal Statistical Complexit y and Excess Entrop y)
E'°°(x) C '°°(L;x) (10.12)

Proof: Recall the de nition of E'°° (x):

P(L—I x);L=1 (x))

E'°(x) = log, (10.13)
F’(L— I (xNP(L=1 (x))
= log, P(L= '!(X)ﬂ L=1 () (10.14)
P(L=1 ()
- log, P(L= (IL = (1 (x)) (10.15)
F’(L— 1 (x)
- log, P(L—l ()il = (1 (x)) (10.16)
P(L= | CNPCL = (1 6))
= log, P(L= (1 (iL=1 () (10.17)
P(L= (1 (x))
= logP(L = (I (xDjL=1 (x)) log,P(L= (1 (x)) (10.18)
= C °(Lix) + logp P(L = (1 (x)iL=1 (X)) (10.19)

C '°°(L:x) (10.20)
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Theorem 22 (Bounds of Excess (Densities)) E™¢ C '°°(L).

Proof : Identical to the global theorem. Alternately, simply take the expectation value of both sidesof the
previous theorem.

10.3.3 Comp osition of the Global State from Local States
10.3.3.1 Extended or Patch Causal States

Rather than consideringthe past and future light-conesof a single point-instant, we can consider those of
a patch of points at the sametime. It will be conveniert to only consider connectedpatches. The past and
future conesof the patch are simply the ur|1ions of the conesof the patch's constituent cells. We denote the

patch's past light-cone by P, its future by P. We de ne prescienceand the patch causalstate exactly as for
the local case;the patch causalstate is written P.

Transparertly, the patch causalstates are prescient (for the patch future light-cone), minimal amongthe
prescient patch states, and render the patch's future light cone conditionally independert of its past light
cone. Moreover, Lemma 28 holds good for them, too; we shall make much use of this in what follows.

10.3.3.2 Comp osing Local States into Patch and Global States

Lemma 31 (Patch Comp osition Lemma) The causalstate of a patch at one time P is uniquely deter-
mined by the composition of all the local causal stateswithin the patch at that time.

Proof: We will show that the composition of local causalstates within the patch is a presciert \e ectiv e
state" of the patch, and then apply minimalit y.
Consider rst a patch consisting of two (spatially) adjacert cells,x; and x,. De ne the following regions:

Le = L (x)\ L (x2)
L1 = L (X1)nLe
L = L (X2)nLe

oo !
Thus L (X1) =L1 [ L¢, and likewisefor L (x2). Dene L1, Lc and L similarly. (SeeFigure 10.2 for
a picture of theseregions.) Now considerthe con gurations in theseregions. We may draw a diagram of
causale ects (Figure 10.3).

!
Lemma 29 tells us that every path from L, or Lcto Ly mustgo through L;. By the very deT nition of
light-cones, there cannot be a path linking L, to L. Thereforethere cannot be a link from L, to L. (Such
|
a link would in any caseindicate that L1 had aldependenceon L ¢ which was not mediated by L 1, which is

false.) All of this is true, mutatis mutandis, for |, aswell.
Now notice that every path from variablesin the top row | tr|1e variables which collectively constitute

P | to the variablesin the bottom row | which collectively are P | must passthrough either Ly or L.
The set Z = fLq;L,g thus \blo cks" those paths. In the terminology of graphical studies of causation, Z
]

(Ij-serarates P and P. But d-separationimplies conditional independence(Pearl 2000, p. 18). Thus P and

P areindependert giventhe composition of L, and L,. But that combination is a function of P, soLemma
28 applies, telling us that the composition of local statesis presciert. Then Lemma 30 tells us that there is
a function from the composition of local statesto the patch causalstate.

Now, the reader may verify that this argumert would work if one of the two \cells" above was really
itself a patch. That is, if we break a patch down into a single cell and a sub-patch, and we know their causal
states, the causal state of the larger patch is xed. Hence, by mathematical induction, if we know all the
local causal states of the cells within a patch, we have xed the patch causalstate uniquely. QED.
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L L L

1 (o 2

Figure 10.2: The space-timeregionsfor a patch of two cells. point-instants which belong exclusiwely to the
light-conesof the cell on the left (x1) are shadedlight grey; those which blelong exclusiwely to the light-cones

of the other cell (x») are shadeddark grey. The areasof overlap (L. and L) are white, with heavy borders.

Note that, by the de nition of light-cones, the con guration in L can have no e ect on that in L or vice
versa.
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Figure 10.3: Diagram of causale ects for the two-cell patch. Arrows o w from causesto e ects; the absence
of a variable betweentwo nodesindicates an absenceof direct causalin uence. Dashedlinesindicate possible
correlations.
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Theorem 23 (Global Comp osition Theorem) The glokal causal state at one time G is uniquely deter-
mined by the composition of all the local causal statesat that time.

Proof : Apply Lemma 31 to the \patc h" of the ertire lattice. The proof of the lemma goesthrough, because
it in no way dependson the sizeor the shape of the past, or even on the patch being nite in extent. Since
the patch causal state for this patch is identical with the global causal state, it follows that the latter is
uniquely xed by the composition of the local causal states at all points on the lattice. QED.

Remark 1. We have thus shown that the global causalstate can be decompsedinto local causalstates,
as we have de ned them, without losing its global properties or indeed any information.

Remark 2. Conceivably, we could de ne local causalstateswith referencenot to light-conesbut to regions
of other shapes, and someof our formal results would still hold. It is not clear, however, whether we could
then recover the global causal state through composition, sincethe properties of light-cones per se played
an important role in our proof. This topic desenesfurther investigation.

10.4 Connections Among Local States; the -Mac hine

Just as in the caseof time seriesor of transducers, causal states succeedead other, with transitions be-
tween states being accompaniedby obsenational symbols. In the caseof spatial processesthere are two
complications.

First, transitions can be made, not just forward in time, but also laterally, from a cell to any of its
neighbors. Thus we will needto label transitions, not just by their probabilities and their symbols, but also
by their directions.

The secondcomplication concernsthose symbols. For time series,the symbols on the transitions were
simply that, symbols from the alphabet A. For transducers, we neededto label transitions by two symbols,
onefrom the input alphabet A and onefrom the output alphabet B. In both casesthe labels consistedof all
the new obsenations, of all the new data, obsened in the courseof the transition. > The new data obtained
from a transition in a spatial processconsistsof the valuesof point-instants which are in the past light cone
of the new point-instant, but were inaccessiblefrom the old one.

More formally, de ne the fringe of the past light coneof x, when moving to the neighboring point-instant

x0 asall point-instants in L (x9 that werenot in L (x). (SeeFigures 10.2 and 10.4.) Then the new data
consistsof the con guration in the fringe.

That we should considerthe new data to be the fringe con gurations is not at all obvious (at least not
to me); therefore it needsto be proved. The proof will take the form of showing that the old local causal
state, plus the fringe, determinesthe new local causalstate. There are two casesto considermoving forward
in time, and moving sideways in space.

10.4.1 Temporal Transitions

We want to move forward in time one step, while staying in place. Call the point-instant we start at x, and
its successox* . A little thought will convince you that the whole of the new future light coneis contained
inside the old future light cone,and vice versafor the past cones.Solet's de ne

L (x")nL (x)

Ln
L)L (x7);

Lo

L is the fringe. (SeeFigure 10.4for a picture of theseregions.)

Lemma 32 (Determinism of Temporal Transitions) The local causalstate at x* is a function of the
local causal state at x and the time-forward fringe L.

2Cf. the idea of the \inno vation" in ltering theory (Bucy 1994).
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—t

L L) L

0 (0]

Figure 10.4: Space-timeregionsfor the time-forward transition from x to x*. Region ins'ide heavy borders:
L (x), the past Iight-cone'ofx. Dark grey: L (x*), the past light-cone of x* . Light grey: L '(x" ), the 'future
light-cone of x*. White: L (x), the future light-cone of x. Ngte that L (x) L (x*)andL (x*) L (x).
Ln consistsof the dark grey cells outside of the heavy lines; L, consistsof white cells (not the light grey
ones).
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)
L (x%)

A

Figure 10.5: Diagram of causale ects for the con gurational variablesinvolvedin atime-forward transition.
Dashed arrows indicate possible non-causalcorrelations. Dotted arrows indicate indirect e ects, mediated
by paths consisting ertirely of solid arrows.

Proof. Start by drawing the diagram of causale ects (Figure 10.5).

!Lo and !|_ (x™) jointly constitute !|_ (x), sothere must be paths from L (x) to both of them. Now, L(x*)
renders L (x*) and !|_ (x*) conditionally independert. Henceit should d-separatethem in the graph of
e ects. But L (x) ils part of L (x*) and hasa direct path to L (x). This meansthat there cannot be a direct
path from L(x) to L (x*); rather, the causationmust be mediated by L (x*). (We indicate this in the graph
by a dotted arrow from L(x) to !|_ (x*). Similarly, L (x) certainly Ihelps determine L (x* ), but it neednot
Ido o) directl)ll. In fact, it cannot: L(x) must d-separate L (x) and L (x), i.e., must d-separate L (x) from
L (x*) and L,. Hencethe in uence of L (x) on L(x*) must run through L(x). (We indicate this, too, by
a dotted arrow from L (x) to L(x*).)

|
Now it is clear that the combination of L(x) and L, d-separatesL (x*) from L (x*), and hencemakes
them conditionally independert. But now the usual combination of Lemmas 28 and 30 tell us that there's

a function from L(x); Ln to L(x*). QED.

10.4.2 Spatial Transitions

Lemma 33 (Determinism of Spatial Transitions) Let x; and x, be simultaneous, neightoring point-
instants. Then L(x2) is a function of L(x;) and the fringe in the direction from x; to x2, L2.
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Here the breakdown of the past and future light-cone regionsis the sameaswhenwe sav how to compose
patch causalstates out of local causalstatesin Section 10.3.3,asis the diagram of causal e ects; we'll use
the corresponding terminology, too. (SeeFigs.10.2and 10.3, respectively.) What we hope to show here is

]

that conditioning on the combination of L1 and L, makesL (x») independert of |, and L. Unfortunately,
asthe reader may verify by inspecting the diagram, our conditional variables no longer d-separatethe other
variables (since they have an unblocked connection through L;). All is not lost, however: d-separation
implies conditional independence,buf, not cogversely

Abbreviate the pair of variables Li;L2 by Z. Now, L, is a (deterministic) function of L. and L ».

! !
Henceit is alsoa function of Z and L¢. ThusP(L2jL2;Z;L¢) = P(L2jZ;L¢). But this tells us that

Lo Loz Le (10.21)
From d-separation, we also have

Lo Al LejZ:Ls (10.22)
Applying Eq. A.33,

Lo llaLeiZ (10.23)
Applying Eq. A.34,

Lol LejZ (10.24)

SinceZ = Z; L,

Lol LojZiLs (10.25)

The following conditional independenceis odd-looking, but trivially true:

! .
Lol [2jZ (10.26)

And it, alongwith Eq. A.35, givesus
! .
L2l LeL2jZ (10.27)

!
A similar train of reasoningholds for Lc. Thus, the ertire futureylight cgpeof x; is indeptlandert of that
point-instant's past light cone,given L and L ,. This tells usthat Li;L, is presciert for L (x2), hence

L, is a function of it.
QED.

10.4.3 Arbitrary  Transitions

Lemma 34 (Determinism along Paths) Letx; andx» be two point-instants, suchthat x is at the same
time or later than x;. Let be a spatio-temporal path connecting the two point-instants, arbitrary exaept
that it can never go backwaids in time. Let F be the sucessionof fringes enmuntered along . Then L(x2)
is a function of L(x;), andF ,

L(x2) = 9o(L(x1); ;F) (10.28)

for somefunction g.
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Proof. Apply Lemma 32 or 33 at eadh step of . QED.

Lemma 35 (Path-Indep endence of Transitions) Letx; and X, be two point-instants asin the previous
lemma, and let 1, 2 betwo paths connecting them, and F , and F , their fringes, all asin the previous
lemma. Then the state at x, is independent of which path was taken to reach it,

g(L(x1); 1:F ;) = 9o(L(x1); 2:F ,): (10.29)

Proof. Supposeotherwise. Then either the state we get by going along ; is wrong, i.e., isn't L(xz), or the
state we get by going along » is wrong, or both are.

L(x2) & g(L(x1); 1;F ;) _ L(x2) 6 g(L(x1); 2;F ;) (10.30)
L (x2) &L (x2)iL(x1); 1;F, _ L (x2) &L (x2)iL(x1); 2F , (10.31)
DL (X)L L (x2)iL(x1); 1;F , A L (x2)L L (X2)iL(x1); 2;F ,) (10.32)

But, by the path determinism lemma34, L (x2).L L (Xx2)jL (x1); 1;F , and L (x2)L L (X2)jL(X1); 2;F ,.
Hencetransitions must be path-independert. QED.

10.4.4 The Labeled Transition Probabilities

Just asin the caseof time series,we can construct labeled transition probability functions, T, which take
as argumerts the current state, the direction of transition and the fringe seenon transition (regarded as a
string over A), and returns the state arrived at. For time series,we alsoinclude the probability of emitting
that symbol and so of arriving at that state. That is licit, becauseead state is assaiated with a unique
morph, and so a unique distribution for the next symbol. Here the local causal states have morphs, but
only over their future light cones,which include little if any of the relevant fringes. Soit's not immediately
obvious that those transition probabilities are well-de ned, stationary objects.

In practice, every spatial systemwe have examineddoes have well-de ned transition probabilities between
its local states. | am led to the following.

De nition 42 (Causal Parents of a Local Causal State) The causal parents of the local causal state
at x are the causal statesat all point-instants which are one time-step before x and inside its past light-cone:

A(x) fLivit Djliy xij cg (10.33)

Lemma 36 (Screening-o  of Past Light Cone by Causal Parents) The local causal state at a point-
instant, L(x), is independent of the con gur ation in its past light cone, given its causal parents:

L(X)L L (X)jA(x) (10.34)
Proof. x is in the intersection of the future light conesof all the cellsin the patch at t 1. Hence, by
the argumerts given in the proof of the composition theorem, it is a ected by the local states of all those
cells, and by no others In particular, previous valuesof the con guration in L (x) have no direct e ect; all
causation is mediated through those cells. Hence,by d-separation, L (x) is independent of L (x). QED.

Theorem 24 (T emporal Markov Property for Local Causal States) The local causalstate at a point-
instant, L(x), is independent of the local causal statesof point-instants in its past light cone, givenits causal
parents.

Proof. By the previous lemma, L(x) is conditionally independert of L (x). But the local causal states in

its past light coneare a function of L (x). Henceby Lemma A.38, L(x) is alsoindependert of those local
states. QED.
Comforting though that is, we would really like a stronger Markov property, namely the following.
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Conjecture 2 (Markov Field Property for Local Causal States) The local causal states form a
Markov random eld in space-time.

Argument for why this is plausible. We've seenthat, temporally speaking, a Markov property holds: given
a patch of cellsat onetime, they are independen of their past light cone,given their causalparents. What
we needto add for the Markov eld property is that, if we condition on present neighbors of the patch, as
well as the parents of the patch, then we get independenceof the states of all point-instants at time t or
earlier. It's plausible that the simultaneous neighbors are informativ e, sincethey are also causaldescendats
of causal parents of the patch. But if we considerany more remote cell at time t, its last common causal
ancestorwith any cell in the patch must have beenbeforethe immediate parents of the patch, and the e ects
of any such local causalstate are screenedo by the parents.

10.4.5 -Mac hine Reconstruction

We have designedand implemented an algorithm for the reconstruction of local causalstatesfrom simulation
data for lattice dynamical systems. (It could, in principle, be used on experimental data as well.) The
procedureis as follows. We examinethe empirical joint distribution for con gurations of past light-conesof

depth L and future light-cones of depth K. That is, we gather statistics on the joint distribution of past
L L1 K 1 K

and future cones.If we have seenN light-cone pairs, then we estimate P(L =1 ;L =1 ) by
L L K K Lk
! ! :
Pu(L =1 5L =1 ) = % (10.35)
L Ko . . . ..
where (1 ;1 ) simply counts the number of times we have seenthat pair of light-cones. This is known as
the joint empirical distribution. Then we calculate the empirical conditional distribution of futures for eat
1 K 1 K L L L 1 K
past, P\(L =1 jL =1 ), foreah | andeah | ,as
K K L L p - LK
! ! i = ; =
BuL =1 L= = Pl 'LLL' ) (10.36)
Pu(L =1)

where the denominator is obtained, in the normal way, by summing the joint distribution over all future
light-cone con gurations. Finally, we group the past light-conesinto classesor e ectiv e states. We list the

L
pastsin someorder, and start by assigningthe rst pastto the rst class. Now considerpast | , which is

L
at least the secondpast in our order. We go through all the existing classedsn order, and chedk whether |
is compatible with all the pastsin that class. Compatibilit y betweentwo pastsis de ned by the Euclidean
distance betweentheir empirical %onditional distributions of futures being lessthan a pre-chosentolerance

L L
parameter . That is, | and | are compatible when
X Ko1K LL Ko1K L Lo 2
Pa(L =1 jL=1) Pu(L =1 jL=1) (10.37)
!I K
L . . . . o . . . L
If | is compatible with all the pasts already in state i, it is compatible with state i. We add | to the

rst state in our enumeration with which it is compatible. If it is not compatible with any existing state, we
create a new onefor it. This procedureis repeated until all pasts have beenassignedto states.

Clearly, compatibility between histories is not a true equivalencerelation (it is not transitiv e), so the
order in which pasts are cheded for membership in states, and in which states are created, does matter.
This can be e ectiv ely randomized, however, and in any casedoesnot e ect the reliabilit y of the procedure,
which we now address.
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10.4.5.1 Reliabilit y of Reconstruction

Supposethat L and K aresu cien tly largethat they su ce to distinguish the causalstates,i.e., that if we had
the exact distribution over past and future light-conesof those respective depths, and partitioned according
to the de nition of local causal states, we would recover the true local causal states. Then conditioning on
pasts of depth L makesfutures independen of the further past. Indeed, every time we examinethe future of
a certain past con guration of depth L, it is independert of all the other futures of that samecon guration.
Thus, the strong law of large numberstells us that our estimate of the conditional probability of any future
con guration of depth K will almost surely corvergeon the true probability:

rTK o1 KoL L K o1 KoL L !
P(L =1 jL =1) Pn(L =1 jL=1) N!' 1 0 (10.38)

Hencethe squarederrors also convergeto zero. Sincethere are only a nite number of such con gurations,
it follows that the sum of the sum of such squarederrors will also corvergeto zero, with probability one.

Now, under the assumptionswe have made about being able to recover the causal states from exam-
ining only conesof nite depth, for any processthere will be only a nite number of distinct conditional
distributions of future light-cones. Hencethere will be a strictly positive g, suc that all the conditional
distributions have a total-v ariation distance of at least ¢ from ead other. Pick a 0=2 for our tolerance
parameter. Then two pastswill be wrongly assignedto the samestate only if one of their empirical distribu-
tions di ers from its true distribution by at least (=2. But the probability of this happening goesto zeroas
N I 1 ,aswe'veseen.Hence,asymptotically, the probability of any two light-conesbeing wrongly assigned
to the sameclassgoesto zero. Similarly, if two light-cones should be placed together, the probability that
their empirical distributions di er by enoughto separatethem also goesto zero. Thus, asymptotically, all
light-cones are assignedto the correct equivalenceclass, provided 0=2. Indeed, all that we really need
is for to be below (=2 for suciently large N, soit suces that ! O.

To summarize: the spatial reconstruction algorithm given here is consistert, PAC, and reliable, in the
samesensesasthe state-splitting algorithm for time series(Chapter 5). All this, recall, is under the assump-
tion that past and future light-conesof depth L and K are su cien t to recover the causalstates. If we can
let L; K ! 1, then the algorithm is consistert for all spatial processesvith some nite speed-of-ligh.

Any attempt to reconstruct causal states from empirical data is necessarilyan approximation. Other
algorithms exist in the literature, all of which deliver the appropriate causal states in the limit of in nite
data and in nite history-length (Chapter 5; Crutch eld and Young 1990; Hanson 1993; Perry and Binder
1999). That is, like the present algorithm, they are consistert estimators if givenin nite histories. (If every
causal state can be unambiguously identi ed after only a nite history, then they are simply consistert.) A
number of thesealgorithms (Chapter 5; Perry and Binder 1999) could be adapted to light-cones;others are
restricted to working with time-series. We hope to addressthe important question of the error statistics
(Mayo 1996) of these reconstruction algorithms in future work; our conjecturesabout the convergencerate
of the state-splitting algorithm (Chapter 5) are relevant here, too.

10.5 Emergent Structures

In Chapter 9, | claimed that domains and particles were emergen structures. Here | will shonv how to
de ne domains, particles, and other common spatial emergen structures in terms of the -machine. Later,
in Section11.2.2,I'l considerthe idea that emergen structures can generically be de ned as sub-madines
of the -machine (I'll alsogive a de nition of \emergent").

De nition 43 (Domain) A domain phaseis a sub-machineof the -machine which is strongly connected

for transitions in all spatial directions. A domain is a strongly-connected set of domain phases.

De nition 44 (Defect) Any point-instant in a con gur ation which is reacheal on a transition that does not
belongto any domain is in a defect
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De nition 45 (d-Brane) A d-braneis a defect machine which is a strongly-annected graph in time (pos-
sibly with a translation) and n > d 1 spatial directions. If d= 1, then it is a em line.

De nition 46 (P article) A particle is a defect machine which is a strongly-connected graphin time (pos-
sibly composed with a translation), but has bounded extent in all spatial directions.

In every casewhich has been cheded, the particles and domains identied by hand, through spatial
computational medanics, exactly correspond to sub-madinesidenti ed in this way. That is, spatial causal
states are also spatio-temporal local causal states.

Conjecture 3 (Domain and Particle Emergence) Suppsethat a spatial processhas domains, branes
and particles. Derive a new process from it by applying a Iter which maps each domain to a distinct
value, each brane-type to a distinct value, and each particle to a distinct value. Then that derived processis
emement.

It is hard to seehow domain- Itering could lower the e ciency of prediction, but no proof saying otherwise
exists.

10.6 Examples
10.6.1 ECA Rule 54: Domain and Particles

Let usreturn to rule 54. Running the -machine reconstruction algorithm for spatial processe®n it identi es
eight equivalenceclassesof past light-cones; we need only go back to a depth of 2 to do this. (SeeFigure
10.6.) Furthermore, we can get the spatial transition structure (Figure 10.7) and the temporal structure
(Figure 10.8). Compare Figure 10.7 with Figure 9.3. The two structures are manifestly the same, both in
states and in transitions. (It is easyto work out the correspondencebetweenthe fringesin the former and
the scanningsymbols in the later.) But the domain Iter was assenbled by hand, and the new -machine
was automatically constructed.

Obsene that the probability of staying within a domain phase,once erntered, is much higher than that
of leaving it, so that grouping the domain states together (by Itering on the domain) will improve the
e ciency of prediction. That is, the domain- Itered processis emergert.

10.6.2 ECA Rule 110: Domains and Particles

Recall that ECA 110 has one primary domain, and a large number of minor, lessstable ones. The primary
domain, ©, has spatial period 14 and temporal period 7, sothat ead point in the domain follows one of
two distinct time courses.

All of this was discovered by hand, and pretty painful hands at that. Here is the result of running the
spatial -machine reconstruction algorithm on rule 110, starting from random initial conditions, with a past
and future depth setequalto 3.

There are 31 causalstates, eat occupied by only a single past light cone. (SeeTable 10.1.) The spatial
structure is given by Figure 10.9, for left-to-right transitions. The © domain can easily be seen,as the
chain of 14 states on the left. It is fairly easyto nd other closedchains of states, but these are not the
other domains. This becomesevidert when we look at the temporal structure (Figure 10.10). © hastwo
sub-componerts, corresponding to the two time coursesavailable to a site within the domain. Most of the
chains of states outside © are not presened under time-evolution, therefore they are not domains.
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Figure 10.6: The light-conesfor the local causalstates of rule 54
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Figure 10.7: Left-to-right spatial transitions for rule 54. The fringe symbols should be read backwards in
time. That is, \10" meansthat the cell to the right of the current one, at the current time, has a value of
1, and the cell to the right of that, one time-step previously, has a value of 0.

101 | 1.00

101 | 0.08

@ 101 | 0.03
000 | 100 | 014 111 | 058 @ 100 | 0.13
m
@
101 | 0.08 010 | 0.19
110 | 1.00
001 | 0.02
Figure 10.8: Temporal transitions for rule 54. The fringe should be read left-to-right. That is, \011" means

that the cell to the left of the presen cell hasa value of 0 at the preser time, that the presen cell will have
a value of 1 at the next time, and that the cell to the right of the presert cell has a value of 1 currently.




State Label PastLight Cone | State Past | State Past | State Past | State Past
A 11110 B 11100 C 11000 D 10001| E 00010
001 010 100 001 011
1 1 0 1 1
F 00100 G 01001| H 10011 I 00110| J 01101
110 101 011 111 111
1 1 1 0 0
K 11011 L 10011| M 01111| N 11111 O 00000
111 110 100 000 000
0 1 0 0 0
16 10000 34 01000 87 10100| 103 01100 157 10010
000 100 110 110 011
0 0 1 1 1
190 11010 222 10110 235 01110 265 00001| 315 11001
111 111 101 001 101
0 0 1 1 1
334 00101 350 10101| 381 11101| 397 00011| 430 01011
111 111 011 011 111
0 0 1 1 0
455 00111
110
1

110

Table 10.1: Local causal states of rule 110. Each state contains only a single light cone. The states which
composethe primary domain are given alphabetical labels, in accordancewith previous studies of the rule.
The others are labeled by numbers assignedto them by the reconstruction algorithm.
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111 | 0.14
A 381
100 | 0.86 010 | 0.42
B 8
000 | 0.87
c
111 | 0.90 111 | 0.50 000 | 0.40\ 011 | 1.0
b}
D 000 | 0.10 -
110 | 0.82 000 | 0.76™\_ 111 | 0.13 0 010 | 0.24
E e \ 000 | 0.05 e
100 | 0.96 000 | 0.51 | 038\ <" 352
F 110 | 0.3 111 | 0.18| 111 | 0.49 000 | 0.41 . 011 | 0.58 | 010 | 0.08
111 | 0.95 e 011 | 1.0
110 | 0.04 ( G 1 e
111 | 1.0 100 | 0.13 111 | 0.83) 110 | 0.17 011 | 0.48
H 101 | 0.76| 010 | 0.06
010 | 0.93 101] o. . 101 | 0.68
@ <
011 | 0.87 110 | 0.46 —
J
ou | 092 | J
K | Too1 | 054 110 | 0.13
101 | 0.94 -
L ]
001 | 0.87
M
001 | 0.96
N T) o001 | 013

Figure 10.9: Spatial part of the -machine for rule 110, left-to-right transitions. States belongingto the °©

domain, the rule's \true vacuum," are enclosedin a box on the left. The fringe labels are read left-to-rightt,
asin Figure 10.7.
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A
00110 | 0.83
E
01010 | 0.96
0 00111 | 0.13 | 10110 | 0.25 (o)) 00000 | 0.41
01001 | 0.87 01110 | 0.13 10110 | 0.03 00111 | 0.59
10110 | 0.85 M 01010 | 0.68 01101 | 0.04 10110 | 0.76 | 10110 | 0.52
110 OTO0T T 0.36 11010 [ 0,66 01110 | 0.21 TI000 T 0-50 OI000 T 007k

10111 | 01100 | 0.8

‘
01001 | 0.05| 01111 | 0.80 JI\_11111 | 0.10°\ 01011 | 0.04™ 11100 | 0.07™ 10100 | c| 01110 | 0.0 ‘ w 11111 | 0.50

L

10100 | 0.76 00111 | 0.06

01011 | 0.95 11011 | 1.0 [\_01100 | 0.05 01100 | 0.54 11010 | 0.60

= b‘
T [~
|
| 1.0/ 10001 | 0.01 To001 | 1.0 10001 | 0.2 G001 | 048,
é/
e ———— ‘
10111 | 0.60 01101 | 0.61
10111 | 081 10000 | 0.06 10111 | 0.49 11101 | 0.40_~"11010 | 0.07
@ 10000 | 0.51
10111 | 1.0 /
381

11101 | 0.03 10111 | 013 11101 | 0.39

Figure 10.10: Temporal part of the -machine for rule 110. The large box on the left enclosesthe domain
0, the sub-boxesits two phases.The fringe labels are read asin Figure 10.8.
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10.7 Summary

The main point of this chapter has beento shav how to de ne local causal states for well-behaved spatial
processes.By using light conesfor our histories and futures, we can assigna causal state to ead point-
instant, and theseare the unique minimal optimal predictors, aswe'd hope; indeed, almost all of the familiar,
comforting properties of causal statesin purely temporal processesarry over. We can also composethese
local causalstatesinto the causalstates for extendedregions, even the ertire lattice, thereby recovering the
global causalstate. We can de ne the most common sorts of emergen structure (domain, particle, etc.) in
terms of the -machine connectingthe local causalstates, and so put all the results of Chapter 9 on a much
rmer footing.

If the ideasin this chapter are the right way of thinking about patterns and complexity in spatial
processesthen it really doesn't make much senseto try to work out the complexity of (say) static images
or of individual con gurations. Complexity, on this view, must be a function of the processwhich generates
con gurations (cf. Lloyd and Pagels1988); we needmovies, hot snapshots. But this should not be distressing
to physicists: we, of all people, should be very suspiciousif pattern appeared without a causal history to
bad it up.

| want to closethis chapter by suggestingtwo area for future work.

One hasto do with irregular lattices. | have assumedthroughout that spaceis a regular lattice, that
every cell's connectionslook like every other cells. But a lot of the math dewveloped here doesn't depend
on that. Spacecould be an arbitrary graph, for instance, and we could still de ne past and future light
cones,and solocal causalstates| presumably a di erent set of causalstatesfor eat point with a distinct
set of connections. | think the Composition Theorem would still hold, but | don't really know. It would
be interesting to nd out, sincethere are many important dynamical systemswhich live on spatial lattices,
but not on regular graphs. In particular, many technical, biological and social networks seemto be \small
world" networks, and it would be nice to understand how they work, and particularly nice to understand
their emergen structures (if any) (Watts 1999; Shalizi 2000). We might also look at these networks as so
many interconnected transducers, along the lines of Chapter 7| which may be formally equivalent! But
the transducer view may be more valuable when we do not know what the network is to start with | and,
after all, a network, in thesesense,is a pattern of causalinteraction, soit ought to be something we infer.
Sothis's one areawhere the theory could use somework.

Another, much more abstract one, goesbadk to the composition theorems, which say that global proper-
ties can be built up out of local ones. This is reminiscert of a common sort of result in algebraic geometry,
where a global invariant is algebraically composed out of objects which represert local properties, as the
polynomial equivalert of a knot is constructed from terms represerting its various parts. Sincewe cande ne
algebraic structures which are related to the causal states, asin Appendix B.2, we might be able to give
an algebraic version of the composition theorem, which actually stated what the composition function was,
rather than just proving that it must exist. This could also open the way to a more direct and algebraic
characterization of things like domains. But this is all, alas, quite speculative.®

3Thanks to Mitc hell Porter for suggesting this idea.
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Chapter 11

Conclusion

11.1 What Has Been Accomplished

The main line of this book hasbeenthe exposition of computational mecdanicsfor increasingly sophisticated
processes.

We started, in Chapter 3 with memorylesstransducers, wherewe constructed causalstates as equivalence
classesof inputs | two inputs are causally equivalent when they have the sameconditional distribution of
outputs. The causal states, we saw, were optimal predictors, and the unique minimal optimal predictors.
Sincethey are both unique and minimal, we could identify the complexity of the processwith the complexity
of the causalstates, de ned asthe amount of information neededto specify the current causalstate.

The rest of the book shoved how the samebasicidea of causalstate works with di erent sorts of process:
time series,transducersand CAs. The time serieschapter intro duced the idea of assigninga distinct causal
state to eadh momert of time and of connectingthem together through an -machine. The -machine'sinter-
nal transitions are deterministic (in the automata-theory sense)and minimally stochastic. This work revisits
the core of computational mecanics (Crutch eld and Young 1989; Crutch eld 1994a)with more rigor and
new techniquesof proof, which lead to somenew results, such asthe minimal stochasticity of the -machine,
and the uniquenessof the causalstates. Chapter 7 introduced the computational mechanics of interacting
time series. Chapter 9, following a long tradition of spatial computational mecanics (Hanson and Crutch-
eld 1992; Crutch eld and Hanson 1993b; Hanson and Crutch eld 1997; Feldman and Crutch eld 1998a),
assignsa causal state to ead point in one-dimensionalspace,e ectiv ely treating the spatial coordinate as
Chapter 4 treated time. Finally, Chapter 10 went beyond the older temporal and spatial computational
mechanics, to a fully spatio-temporal version of the theory, with the advantage of working in any number of
spatial dimensions.

Along the way, we sav how to estimate the causalstates and the -machine from data, and how spatial
computational mechanics lets us begin to get a handle on the computational powers of cellular automata.
Now we'll seehow to de ne emergenceand self-organization.

11.2 Emergence

Reductionism, roughly speaking, is the view that everything in this world is really something
else,and that the something elseis always in the end unedifying. Solucidly formulated, one can
seethat this is a luminously true and certain idea.
| Ernest Gellner (1974, p. 107)

\Emergence" is an extremely slippery concept, usedin an immensenumber of ways, generally with no
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attempt at precision whatsoever. It is alsoonewith a decidedly unsavory history.? It is not at all clear that
it is worth explicating. Nonetheless,let us try.

The strongest senseof \emergence" known to me, and also the oldest, is the following. A property of
a composite object is emergen if it cannot be explained from the properties and interactions of the \lo wer
level" ertities composingthe object. Now, we cannot know that anything is emergen in this sense.At best
we can say that we don't yet have an explanation for a particular property, so for all we know it might
be emergen. To call something emergen is therefore not to say anything about the property at all, but
merely to make a confessionof sciertic and mathematical incompetence. (Epstein (1999) provides many
examplesof explanations of phenomenaoncetaken to be exemplarsof emergencefrom chemical a nit y on
up.) Humility is all very well and good, but this is excessie.

A more moderate notion of emergencas alsoonewhich is moreinteresting, and potentially says something
about the world, rather than our inability to interpret it. In this view, emergen properties’> are ones
which arise from the interactions of the lower-level entities, but which the latter themselvesdo not display.
Standard examplesof this sort of emergenceare the laws of thermodynamics (individual moleculesdon't
have a temperature or a pressure),or e cien t allocation® of resourcesin various types of market econony
(Debreu 1959; Lange and Taylor 1938; Simon 1996; Stiglitz 1994), or collective oscillations in ecosystemsor
economies(Krugman 1996).

A number of authors (seeespecially Simon 1996; Dennett 1991; Holland 1998 and Auyang 1998) have
explored this sort of emergenceand while they have reached no de nite conclusionsor formalizations, there
doesseemto be a consensun two points. First, the variables describingemergen properties must be fully
determined by lower-level variables| must supgerveneon them, asthe philosopherssay (Kim 1998). Second,
higher-level properties are worthy of being called emergen only if they are \easier to follow," or \simplify
the description," or otherwise make our life, as creaturesattempting to understand the world around us, at
least a little easier.

Putting thesetwo ideastogether, we can actually de ne emergence.Crutch eld did soin his 1994 papers
(1994a,1994b), but | fear he was over-subtle, since very few people have picked up on it. The goal of this
sectionis to presen his views, with a few modest technical additions, in a crushingly explicit manner.

11.2.1 Emergent Pro cesses

For the rest of this section, I'll write asthough we wereonly dealing with time series,but everything applies,
mutatis mutandis, to transducers (Chapter 7) aswell. There are more subtle changesneededto deal with
spatial processeqChapter 10), which I'll mertion asthey arise. Let's start by xing just how easyit is to
predict a process.

Denition 47 (Eciency of Prediction) The e ciency of prediction of a processis the ratio between its
ex@ssentropy and its statistical complexity.

e = — . (11.1)

It is clear from the Bounds of ExcessTheorem (Theorem 10) that e is a real number between0 and 1, just
as an e ciency should be. We may think of it as the fraction of historical memory stored in the process
which does\useful work" in the form of telling us about the future. It is straight-forward to ched that, for
any prescier state class®, E=C (F@) e

If C = 0, there are two possibilities. One is that the processis completely uniform and deterministic.
The other is that it is IID. In neither caseis any interesting prediction possible, so we sete = 0 in those

1For remarks on the assaciation betweenthe notion of emergenceand obscurantism in biology and social science, seeEpstein
(1999). For the connections between holism and totalitarianism, seePopper (1945, 1960).

20r emergent phenomena or behaviors or structures or what-not; all of these terms are used, if not interchangeably, then
with an apparent conviction that they're close enough for government work.

3|s \ecien t allocation" an emergert property, an emergert phenomenon, or an emergert behavior ? Who can say?
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case$
For spatial processesg is the ratio betweenthe densities of the excessentropy and the statistical com-

plexity, Eloc=C '°¢,

$0 $
De nition 48 (Deriv ed Pro cess) One process, S , derives from another, S, i S? = f(S;), for some
0

) $ 0. . $ . .
measurable function f. S is called the derived or Itered process S the original, underlying or raw process

This de nition is intendedto capture the idea of \sup ervenience";that is, one set of variablesis on a \higher
level" than another. We can think of f asa sort of lter applied to the original process,passingthrough
only certain aspects of it.

For spatial processesywe keepthe requiremert that f dependsonly on the history, but we do not require
that it be spatially local.

De nition 49 (Emergen t Pro cess) A derived processis emergen if it hasa greater predictive e ciency
than the processit derivesfrom. We then say the derived processemergesfrom the underlying process.

De nition 50 (In trinsic Emergence) A processis intrinsically emergen if there exists another process
which ememgesfrom it.

This formalizes the two intuitions we started with. And it is not trivial, becausethere are plenty of
derived processeswhose e ciency of prediction is the sameor even lower than that of the processthey
derive from. Moreover, once we have chosena new set of variables in which to describe a process(i.e. a
Iter f), whether the new processis emergen is simply a fact about the dynamics of the raw process.And
sowhether the underlying processis emerget is just a fact about its dynamics. Emergenceis thus intrinsic
and objective, and has nothing whatsoever to do with obseners.

It may help to contrast this notion of emergencewith what peopleattempt to accomplishwith statistical
regression. There the goal is to \explain" all of the variance in the output by accourting for the e ects of
all possibleinput variables. What we are attempting to do in looking for an emergen process,on the other
hand, is to Iter out everything we can| getrid of all the small-but-signi cant inputs | soasto simplify
the relationship. We are not trying to explain everything we can measure;we are trying to nd what's
intrinsically important in our measuremets. Emergenceis anti-regression>

11.2.2 Emergent Structures Are Sub-Mac hines of the -Mac hine

There is a sensein which the dynamics of a processare completely summarizedby its -machine| sowhy
can't we useit to build a Iter? The following procedure, in fact, suggestsitself. Divide the -machine
into sub-madines,i.e., strongly connectedcomponerts, and label them all. Find all the transitions between
sub-madines, and give those labelstoo. Then apply the following lIter: at ead time-step, chedk whether
the current causalstate and the previous state werein the samesub-madine. If they were, output the label
of that sub-madine. If they weren't, then the processhas moved from one sub-madine to another; output
the label of that transition.

If the sub-madineshave beenchosenappropriately, the processderived from this Iter will be emergen,
since knowing what sub-madine we are in will reduce statistical complexity without impairing predictive
power, or at least not impair it more than is gained by simpli cation. In this case,we may call the sub-
machines emeigent structures For instance, a loop in the -machine | a closedcycle of states| would
generally make a good sub-madine, and a ne emergen structure. By extension,a (part of a) con guration
generatedby the states-and-transitions in a sub-madine is also an emergen structure. The domains and
particles we sawv when looking at spatial and spatio-temporal processesvere all examplesof -machine based
Iters and emergen structures.

4lt's often tempting to imagine a family of processeswhere E and C both tend to 0 in some limit, and to use L'Hopital's
Rule to calculate the limiting value of e, but | haven't found a way to make that precise.
5Thanks to Scott Page for pointing out this connection.
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11.2.3 Example: Thermo dynamics and Statistical Mec hanics

As | mentioned, many people (Crutch eld 1992; Sklar 1993; Holland 1998) claim that thermodynamic
regularities are emergern phenomena,emergingout of microscopicstatistical mecanics. Let's ched whether
this agreeswith my de nition, both asa sanity-ched for the de nition and an illustration of how it can be
applied.

Consider everyone's favorite companion from introductory statistical medanics, a box full of gas. To
be more speci ¢, considera cubic certimeter of argon, which is corveniertly spinlessand monoatomic, at
standard temperature and pressure. Using the well-known formula (Landau and Lifshitz 1980, sec.43), the
thermodynamic erntropy is

S(N;T;V) = Nkg(logV=N + ¢, logkg T+ + ¢, + 1) (11.2)

where is the \chemical constart" of the gas, given by the Sadur-T etrode formula (Landau and Lifshitz
1980, sec.45), = %zlogzm—2 and of coursec, = 3=2. Argon has an atomic massof just under 40. We are
taking P = 10°Nm 2, T = 293K,V = 10 ®m3. ThusN = 2:47 10" and

S(N;T;V) 6:3 10 3J=K (11.3)

= 6:6 107 bits ; (11.4)

using the cornversion factor kg log2 = 1 bit. Now, at the micromechanical level (almost by de nition) the
dynamics of the gasare Mark ovian, soead microstate is a causalstate. If we samplethe gasat time intervals
of (say) 10 ° seconds,we have a rst-order Markov process.Then E = C h (Feldman and Crutch eld
1998a),sowe needto know h to calculate the e ciency of prediction. As it happens,Gaspard (1998, ch. 0)
estimates the entropy rate of one cubic certimeter of argon at standard temperature and pressureto be
around 3:3 107 bits per second. The e ciency of prediction is thus about 0:5, taking a time-step of one
nanosecond. If we use a much larger time-step, the predictive e ciency of the systemis essetially zero,
which re ects the fact that the gasis very rapidly mixing.

Now considerlooking at the macroscopicvariables;it will be conveniernt to only considerextensive ones,
so let's use total energy particle number and volume, rather than the traditional number, pressureand
volume. (Recall that E = Nc kg T.) Their mean valuesare, of course,E = :16 joules, N = 2:5 10'° and
V = 10 ®m3. All of them uctuate with a Gaussiandistribution, but let's considerjust uctuations in E.
Dene a= E E. By the Einstein uctuation formula (Keizer 1987,ch. 2), the variance is

2 =  kgC! (11.5)

where C = @S=@?. Explicitly ewaluating that, C = Nc\,kB:E2 = 23 102 K ! andso 2=
6:1 10 2272,

Assumewe are sensitive to measuremets at absurdly smalllevelof E = 10 1° joules. Then the entropy
of the macrovariable energyis

2
HIE] = %Iogzz e? (11.6)

33:28 bits : (12.7)

(If weset E to a much larger value, there isn't any noticeable uncertainty in the macrovariable!)

What of the dynamics? Supposethat the gasstaysin the linear regime. Then deviations from equilibrium
values are followed by (on average) exponertial return to equilibrium, plus noise. The dynamics of the
macrovariables, too, are Markovian. The relevant stochastic di erential equation is (Keizer 1987,p. 68):

da
dt
where L, the phenomenolgical coe cient , governs the mean rate of decay of uctuations, and f is white
noise,i.e., f(t) = 0and f (t+ )f(t) = 2kgL ( ). Ignoring (as we did above) uctuations and coupling in

= LCa+f; (11.8)
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the other extensive variables, we get (Balian 1991,sec.14.2.3)L = T 2, where is the heat conductivity.
For argon at STP, 1:017 10 ° watts per kelvin, soL  8:6 10 ° watt-kelvins. If we solve Eq. 11.8,
we nd that the conditional distribution at time t is Gaussian,with a conditional variance given by (Keizer
1987,Eq. 1.8.12)

2) = 21 erct (11.9)

If we take our time-step to be one millisecond, 2(10 3s) 2:0 10 ° 3. The entropy of the conditional
distribution, coarse-grainedat the samelevel asbefore,is 4.4 bits, and this is the entropy rate per time-step
(.,e. h = 44 10° bits/second). Sothe e ciency of prediction is 0.87. If we usedthe sametime-step of
10 °sasbefore,the e ciency isindistinguishable from 1. Hencethermodynamics emergesrom the statistical
mechanics, and doessovery strikingly , sincealmost all of the information neededat the statistical-mechanical
level is simply irrelevant thermodynamically.

11.3 Self-Organization De ned

Recall from Section4.1.1that the theory of causalstatesand -machines requiresonly conditional station-
arity, not strict stationarity. When the processwe are dealing with is non-stationary, the distribution of its
causalstates changesover time, and sothe statistical complexity is a function of time, and we ought to write
it C (t) (cf. Crutch eld 1992). Under what conditions will C (t) be an increasingfunction of time?

Here is an exampleto serve as an intuition pump. Prepare an ensenble of copiesof a processso that
all the copiesstart in the samecausalstate. C (t) is then log1l = 0. Informally, there is only one thing the
system can do, soit is simple. Suppose,however, that sometransitions lead from this initial state to other
causal states, speci cally to a chain of causal states of period p, and that these states are very unlikely to
lead back to the original state. Then C (t) will increaseover time from Oto log, p. That is to say, when
a system spontaneously goes from uniform to periodic behavior (which is one of the canonical examplesof
self-organization), its statistical complexity increases.

What | want to propose,therefore, is that an increasein statistical complexity is a necessarycondition for
self-organization. While the fundamental causalarchitecture remains unchanged, the degreeof organization
| measuredby the amount of information neededto placethe processin a state within the architecture |
is variable. (Cf. the \knowledgedi usion" of Crutch eld (1992).) In every casel canthink of, wherepeople
are pretty well agreedthat self-organizationhappens, it's alsopretty manifestthat the statistical complexity
increases.

If we comparethis criterion for self-organizationwith the de nition of emergencdn chapter 11.2, we see
that self-organizationincreasescomplexity, while emergencegenerally speaking, reducesit, or requiresus to
useit more e ectiv ely for prediction. At rst glance,then, self-organizationand emergenceare incompatible,
but this istoo hasty. Self-organizationis somethinga processdoesover time, like being stationary, or having
a growing variance. Emergenceis, primarily, a relation betweentwo processespne of which is derived from
the other, like \has a smaller ertropy rate than". By extension, a processhas the property of emergencef
any of its derived processess emergen (comparableto \is a function of a Markov chain"). There is nothing
cortradictory in saying that a processis becomingmore structurally complex, while at the sametime saying
that there is another description of the processwhich is always simpler than the raw data.

We can now make senseof the way so many authors have link ed self-organizationand emergence.When
something self-organizesjt becomesmore statistically complex, i.e., optimal prediction requires more infor-
mation. A cognitively-limited obsener (such as a human scientist) is therefore motivated to look for a new
way of describing the processwhich has a higher predictive e ciency . That is, the desireto describe things
simply makes us look for emergen behavior in self-organizing systems. (Imagine describing an excitable
medium, not by saying where the spiral wavesare certered and how their spirals curve, but by giving the
complete eld of molecular concerirations at eac point.) Emergencewithout self-organizationis de nitely
possible| for example,we've seenthat thermodynamics emergesfrom statistical mechanicsin a stationary
(and so de nitely non-self-organizing) system. | presumethere can be self-organizing, non-emergen pro-
cessesthough it might be that someconstraint on possible -machinesrules that out. Assuming, however,
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that self-organizationdoesnot imply emergencethen it is conceiablethat there are processesvhich organize
themselesinto conditions so complex that no human being can grasp them. They would be so organized,
in other words, that they would look very like noise. (Cf. Crutch eld and Feldman 2001a;Crutch eld and
Feldman 2001b;Lem 1968/1983.) Emergencemay be a pre-condition of detectable self-organization.

There is an obstacle blocking the way to simply de ning self-organization as increasing statistical com-
plexity. This is that arisein C doesnot distinguish self-organization from getting organized by something
elsé. We want, in Grasskerger's (1986) phrase, \self-generated complexity,” not any other sort. This leads
me to the following de nition.

De nition 51 (Self-Organization) If a time series (resp. spatial process) is dynamically autonomous,
then it has self-organizedbetween time t and time t + T if and only if C (t) < C (t+ T) (resp.,C '°°(t) <
C "°°(t+ T)).

It would seemsafeenoughto apply this de nition to non-feedba& transducersif the complexity of the
input processis zero, and similarly to non-autonomousspatial systems. It is not clear, however, how much
an input with positive C can contribute to increasingthe organization of a transducer or a spatial process.

Second,it would be nice to test the formalization, by applying it to a large number of caseswhere we
have clear intuitions, even proofs (Hansonand Crutch eld 1997)and seeingthat it agreeswith our intuition,
beforeacceptingit. The largest classof exampleswhich combine intuitiv e consensusabout self-organization,
a guaranteed absenceof outside organizers,and mathematical tractabilit y are cellular automata.

What | hope to do in future work, therefore, is the following. | will assenble a large collection of two-
dimensional CA rules, where a consensusexists as to whether or not they are self-organizing. Then, for
eadh CA rule, I'll produce a large sample of its ewolution from di erent random initial conditions, using the
CAMS, a parallel computer specialized for running cellular automata’. This will give me enough data for
the automatic reconstruction of eacdh CA's -machine, and the estimation of C '°° as a function of time.
Finally, I'll be able to seewhether the rules which peoplethink are self-organizinghave increasing statistical
complexity or not. It'll be particularly niceto be ableto look at families of rules sharing a commonform, and
dier only by parameters, since someof them (e.g., the cyclic cellular automata) self-organize,but others

don't, and the C '°° test ought to pick that up.

11.4 What Remains to Be Accomplished, or Things That Are Not
Yet Theorems

11.4.1 Non-Stationarit vy

As | mentioned in Chapter 4, we do not needto assumewe are dealing with stationary processesmerely with
onesthat are \conditionally stationary," i.e., the distribution of futures, conditional on histories, must be
independert of whenthe history comesto an end. The conditionally-stationary processe$orm a comfortably
large and roomy class,but they're not everything, and it would be nice if we could write down computational
mechanicsin a way which didn't invoke any sort of stationarity assumption.

The obvious thing to do in the caseof time series,is to say that s;, and s, are causally equivalent when

P(Stlz Fj St,= si,) = P(StZZ Fj St,= st,). If the processis conditionally stationary, this reducesto the
normal notion of causalstate. Thesestatesought to be optimal minimal predictors, by the usual argumerts,
and | suspect they'll have deterministic transitions, though that's harder to see.What the -machine would
look like, | really have no idea.

6] rst learned of this point from Mitc hell Porter.
7For details on the CAMS8, see http://www.im.lcs.mit.edu /cam8/. For an even more detailed description of an earlier
machine in the series,the CAM6, seeTooli and Margolus (1987).
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11.4.2 The Permutation City Problem

| haven't even bothered to state asan assumptionthat the order of obsenations in time and spaceis a given.
However, if we're eliminating a priori assumptions,that oneis questionabletoo. It may well be that if we
re-orderedour data in somefashion, it would becomeeasierto predict | in which case,why not do it? Why
not form the causalstates and the -machine on the re-organizeddata which are most e cien tly predicted?
Let's call this the Permutation City Problem, after the novel by Greg Egan (1994), which employs a similar
conceift. This feelsvery silly, but what, exactly, is wrong with it?

The basic aw seemsto be that re-arranging the data shouldn't be free; it takes a certain amount of
information to specify the newarrangemert, and the re-orderedpredictor should be penalizedby this amourt.
(Cf. the \recoding equivalence" of Crutch eld (1990).) If we have n data-points, specifying a permutation
of them requireslogn! bits, so predictive ability hasto increaseby 'O%—”' bits per symbol, or approximately
logn bits per symbol asn getslarge. That the predictive advantage of the rearrangedseriesshould increase
at least logarithmically with n, for arbitrarily large n, is more than a bit implausible. Moreover, we really
ought to perform the same rearrangemen for every seriesfrom the sameensenble, if we want to capture
anything about the process as opposedto a particular realization. On the other hand, if we re-arrange
the data at random, without performing any preliminary computations, then, almost by de nition, we are
simply randomizing the data stream, and destroying any predictable patterns it may contain.

There is no rigorous version of this argumert. However, in the 1930svon Mises (1928/1981) and Re-
icherbach (Russell 1948) de ned a \random collective" as, roughly, an in nite population whose every
sub-population has the same distribution as the whole distribution. While this de nition does not quite
work, subsequen researd has showvn that it is adequateif we restrict ourselvesto sub-sampleswhich can
be speci ed algorithmically (Salmon 1984). This suggeststhat it may be possibleto give a rigorous answer
to the Permutation City Problem, if we agreethat only e ectiv ely-speci able permutations are allowed®.

11.4.3 Contin uity

Throughout this book, | have assumedthat space,time, and obsenablesare all discrete; this is in keeping
with all previous work on computational medanics that | know of. It is fairly easyto formally extend
the de nitions of causal statesto cortinuous variables. For instance, for time serieswith cortinuous time
and values, we might say that two histories are causally equivalent when they give us the sameconditional
distribution over future trajectories!® There are three di culties in the way of such a developmert.

First, it is not clear when the necessaryconditional probability measureswill mathematically exist. The
regularity of conditional probabilities is quite easy for discrete processesjnot so for continuous ones. It
becomesa problem of functional analysis, sothe mathematical foundations, if we aim at keepingto eventhe
preser standard of rigor, will get much more complicated. Still, we might invoke the physicist's licenseto
ignore foundations, on the groundsthat if it works, the mathematicians will nd a way of making it right.

Second,much of the information theory I've usedthis dewelopmert becomesinapplicable. Entropy and
conditional entropy are de ned for cortinuous variables, but they are coordinate-dependent | ertropy is
dierent if distancesare measuredin meters or in inches. This is distressing and unphysical. But mutual
information is independert of coordinates, and so are statistical su ciency and conditional independence,
sowe might be able to recover most of the results by leaning on them. (The role of C , for instance, might

8To be precise, the novel's premise is as follows. The basic constituents of reality are an innit y of events. Every logical
possible relation or set of relations which generates a spatio-temp oral and causal ordering over some of those events leads to,
or rather is, a universe containing just those events in that order. All possible universes co-exist outside time (since time is
internal to univ erses), and all are equally real. For more on the generation of spatio-temp oral order from relations among events,
seeRussell (1927, chs. 28{31). There it is proved that a countable innit y of (extended) events can generate a contin uum of
point-instan ts.

9The Permutation City Problem is due originally to Jim Crutcheld (1990), who also put forth the core of the answer above.
The problem's most forceful current advocate is undoubtedly Murra y Gell-Mann, who | hasten to add is not responsible for the
name. A similar problem was considered earlier by Jorma Rissanen (1989, ch. 6), from whom | took the logn! idea.

10Having just come in to possessionof a copy of Knight (1992), | suspect the resulting theory would look rather lik e his, but
I'm not sure. A detailed comparison between his theory and computational mechanics should be made.
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be taken by 1(S;S).)

Third, reconstruction from data becomesa lot harder. Even with the best analog instrumentation, we
will never have an exact record of a continuous time seriesover a certain interval, which is what we would
want. Evenif we could getit, it would be hard (to say the least) to get repetitions of such a series,sothat we
could empirically estimate the necessaryconditional probability densities. Soit would seemthat cortinuous
computational medcanics could never be applied. But this is too hasty: any statistical analysisof cortin uous
data facesthe sameproblem, which isn't any worse for computational mecanics than for other methods.
We might even join forceswith them, by, say, using a nonparametric technique to estimate the conditional
probabilities from sample data (Bosq 1998), or try tting data to various basis functions (Crutch eld and
McNamara 1987). This would impose prior restrictions on the function , which is something we want to
avoid as much as possible,but, again, continuous computational mecanics certainly can't be worsein this
regard than the existing techniques.

The other out would beto make a virtue of our limitations and explore the computational mecdanics, not
of continuous physical processeshut of cortin uous models of processes.For instance, the above de nition
of causal states can be applied to the Wiener process,W (t): since,forany T > 0, W(t+ T) W(t) is
independert of all previous incremerts of the process,it is evidernt that ead distinct value of W(t), eath
distinct point in physical space,is a distinct causal state. This is a trivial example, but more interesting
processesvould yield to the samekind of analysis, with potentially interesting results, since very little is
known about contin uous, stochastic computation.

11.5 What Is to Be Done, or, Neat Things to Hack

| want to closeby sketching out someareasin which computational mecanicscould be, and is being, applied.
One of the advantagesof an abstract theory is that, becauseit is free of substartive assumptions,it can be
applied to many problems which di er, perhapsradically, in their substance. This is by no meansthe only
reasonto want a general,abstract theory, but it may be a relief to descendfrom the empyrean to the muck
of the lab-bend.

The ideasdescribedin this sectionwere dewveloped in the Computation, Dynamics and Inferencegroup at
SFI, under the leadershipof Jim Crutch eld. The terminology, in particular, is due to Jim. They represent
active areas of researd, and in some casesof collaboration. When | have a particular debt to someone
outside the group, I've indicated it with a footnote.

11.5.1 The Real World

There are lots of data-setscrying out to be fed through -machine reconstruction algorithms. Mostly these
are things whereit's either very hard to comeup with a decert model from rst principles, or there's a real
needto understand the intrinsic computation going on, or both. Most of the rest of this sectionwill be about
applications where exploratory work has beendone in the Computation, Dynamics and Inference group at
SFI.

A word rst, though, about caseswvhereit's just hard to comeup with a good model. Thereis alarge area
in statistics, going by such namesas\non-parametric regression,"that tries to addressthe problem of nding
predictiv e relationships betweenvariables, without the bene t of a pre-setfunctional form for the relationship
(Vapnik 1979/1982; Ripley 1996). Neural networks, in someof their avatars, are nonparametric regression
functions (Zapranis and Refenes1999). Maybe the most elegan theory of nonparametric regressionis that
employing the piecewise-plynomial functions called \splines" (Wahba 1990). Computer scientists study
related techniques, typically in a lessrigorous, more pragmatic way, as\data mining" (Weissand Indurkhya
1998). Generally speaking, nonparametric regressionmethods employ a classof regressionfunctions which
are \univ ersal approximators" | any well-behaved function can be approximated to arbitrary accuracy by
somememnber of the class. (This is easily shovn for neural networks, for instance.)

The di cult y comeswhenyou try to cashin on this promise. When using a neural network, for instance,
you must x the architecture | somany nodes,in somany layers,and soon| and then train the network,
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given the data available. You then ched its performance on new data, and decide whether or not it is
adequate; if not, there is nothing for it but to pick a new architecture and try again. Moreover, to avoid
over- tting the training data, you have to start with small, simple, dumb networks, only going to more
complex architectures when it is clear that no simple one can do the job (Vapnik 2000); this is called
\capacity control". But why should we expect that a simple relationship should always be well-represerned
by a simple neural network? Maybe we should be using something else, like a spline, or a radial basis
function. (Just becausea seriesexpansioncorvergesdoesn't mean that there isn't another expansionthat
convergesfaster; cf. Crutch eld (1992)on the distinction betweencompleteand appropriate function bases.)
Indeed computational learning theory has examplesof problems that are easily learned using one class of
represenation but intractable with another (Kearns and Vazirani 1994). And what is true, in theserespects,
of neural networks is true of splinesand all other corvertional nonparametric methods.

It is not true, however, of -machinesand -transducers. Since computational mecanics actually builds
its modelsfrom data, architecture is not guessd but inferred. With the appropriate inferencealgorithm, the
simplest possiblearchitecture is inferred, eliminating the needfor explicit capacity cortrol. In other words,
in almost any application domain where nonparametric or data-mining methods are used, computational
medanicsis at least a contender.

11.5.1.1 Turbulence

| am not goingto even hint that computational medanicswill solvethe problem of turbulence (Frisch 1995).
But it is often important to have a good model of, say, the velocity uctuations at a point in a turbulent ow
(e.g., for climate models). This hasinspired a couple of attempts to infer causalstatesand -machinesfrom
turbulent ow data (Palmer, Fairall and Brewer 2000; Nicholas Watkins, personal communication, 2000).
These e orts should be revisited, using the new reconstruction algorithm developed here. It would be very
interesting to make an attack on how the statistical complexity and causalarchitecture of turbulence varies
with Reynoldsnumber (and, possibly, other control parameters). We might, for instance, settle the question
of whether the transition to turbulence is self-organizing,with which we began.

11.5.1.2 Physical Pattern Formation

There are now a huge number of situations where experimentalists can reliably produce self-organizedpat-
terns of specic types. Excellert image-sequencealata are available from many of them, thanks to digital
cameras.An obvious but worthwhile project would beto take such a data set (from the Belousors-Zhabotinskii
reagen, say) and feedit through a spatial -machine reconstruction algorithm. The output | the -machine
| should include represenations of all the acknowledgedemergen structures (in the BZ case,spiral waves
and organizing certers). If it does not, something is seriously wrong with the computational mecanics
approad, simply becausewe know what's going on, macroscopicallyanyway, in these pattern-formers. Once
experimentalists get comfortable with this sort of analysis, it will be natural for them to do it on new
pattern-formers they encourter or devise,including onesfrom outside the lab.

11.5.1.3 Biosequences

About the secondapplication of computational medanics peoplesuggest,on learning of it for the rst time,
is\DNA" 11 Simply taking genomedata and running it through an inferencealgorithm would be of relativ ely
little interest, though it might turn up something. More promising would be to take ensenbles of sequences
which are known to have di erent functional properties (e.g., coding or non-cading, or belongingto di erent
regulatory complexes), build their -machines, and seehow those dier. > These could even be used to

11'm sosick of the rst application people suggest| won't even name it.

12\we don't even have to do this for genesin the strict sense. For instance, single-stranded RNA folds up on itself, owing
to interactions between basesalong the strand, much as proteins do. While predicting the shape into which proteins will fold
is very dicult, the RNA folding problem is fairly easily solved, at least for the ground-state conformation of the secondary
structure. It's pretty simple to get large databases of RNA sequencesand their folds. It would then be easyto construct the
-machine for all the RNA sequenceswhich fold into the same con guration. (Thanks to Walter Fontana for suggesting this
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identify the family to which newly-sequencedyenesbelong; hidden Markov models are already usedfor this
purpose,but those HMMs are constructed by the usual ad hoc methods, and could certainly be improved.
An -transducer, built from the samedata-set, would provide classi cations directly.

11.5.2.4 Neural Coding

Neuronscornvey information to one another by meansof brief, intense, highly-stereotyped electrical impulses
known as action potentials or spikes®® Presumably, the pattern of spikesone neuron receivesfrom another
| the spiketrain | corveysinformation about what the upstream neuron has computed about the world,
itself basedon the spike trains it received. Ultimately, spike trains encade information about the world, or
at least about the organism's sensoryorgans. The neural coding problem (Rieke, Warland, de Ruyter van
Stevenindk and Bialek 1997)is, simply, How is that information encaded? Given a spike train, how ought it

be decaded? If we regard the neuron as a transducer, this amounts to attempting to model its input-output

relation. Remarkable progress has been made recertly by applying technigques from information theory
(Dimitro v and Miller 2001) and by calculating the rst Wiener kernel (Dayan and Abbott 2001), i.e., by
attempting linear decaling.

Clearly, we should calculate -transducers and so nonlinear decading \to all orders". The transducer
states would tell us what features of input spike trains a given neuron is actually sensitive to, for instance,
and so what kinds of computations it is able to perform. The full -transducer would allow us to calculate
what ensenble of inputs will maximize the information content of the neuron's output, and seewhether,
as many speculate (Rieke, Warland, de Ruyter van Steveninck and Bialek 1997), and seemsreasonableon
ewolutionary grounds, the distribution of natural stimuli is closeto that which maximizesoutput-information.

Neuronsdo not work in isolation; in particular, it's pretty well establishedthat \p opulation codes" are a
key part of neural represertation and computation (Abbott and Sejnavski 1998). In these casesthe actions
of individual neurons are comparatively insigni cant, information being encaded in the pattern of activity
acrossthe population. There is no in-principle reasonwhy we could not construct a single -transducer for
the ertire population and useit to gure out the population code, just aswe could for an individual neuron.
In fact, by extending the results of the section on feedbak above, we could in some sensecompose the
population's -transducer from those of the individual neurons.

11.5.1.5 Signal Transduction, Gene Regulation, and Metab olic Networks

Signal transduction is the processby which cells detect and respond to environmental conditions, such as
the concerrations of dierent sorts of chemicals, pressure, heat, light, electrical elds, and so forth. It is
carried on by an intricate array of specialized and general-purposesignaling molecules,ranging from large
protein complexesto calcium ions. Signal transduction is intimately related to generegulation, the turning
on or o of the expressionof the various genesin the cell's genome,or more generally the control of the rate
at which di erent genesare expressed.Generegulation, in turn, is part of the control of metabolism, which
is also connecteddirectly to signal transduction.#

Hugevolumesof data are now becomingavailable about all three processeslargely becauseof new experi-
mental devices,sudch as\gene chips”, which record the expressionlevels of thousandsof genessimultaneously.

application.)

13They also communicate by chemical means, but let's pretend otherwise for now.

14The literature on all these biological processes,taken separately, is vast, and by some estimates doubles every twelve
months. Gonick and Wheelis (1991) has a characteristically engaging discussion of the fundamentals of gene regulation. For
philosophical views of these topics, seeMonod (1970/1971) and Goodenough (1998). Loewenstein (1999), while written by a
very distinguished experimenter, is full of misconceptions about information theory and nonlinear dynamics.

Hancock (1997) is intended as an intro duction to signal transduction for biology students; it is straigh tforw ard, but presumes
a high capacity for memorizing molecular names. Ptashne (1992) describes one of the very rst instances of gene regulation
to be understood in full detail, but mercifully stus the experimental details into appendices. Krauss (1999) was authoritativ e
when it was published, and so should not be absurdly out of date when you read this. Milligan (1999) and Carraway and
Carraway (2000) have practical details on experimental systems and approaches.

Quantitativ e treatments of these topics are rare. Fell (1997) may be the best point of entry for physicists or mathematicians.
| have not had a chance to read Bower and Bolouri (2001).
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Thesedata setscry out for statistical modeling, but very little is known about the kinds of relationships we
should expectto nd in the data, meaningthat traditional statistical methods, attempting to estimate pre-
de ned parameters, are simply not applicable. This haslead those doing bioinformatics (Baldi and Brunak
1998)to dewvelop non-parametric and data-mining methods.

The role of computational mecdhanics here would be, again, to provide a method for discovering patterns
in the data which does not require prior assumptionsabout what those patterns are like, yet has proven
optimality properties, and will nd any patterns in the data which have any predictive power. The -
transducer estimated from biological data would be an abstract model of the input-output characteristics
of the signaling or regulatory network that provided the data, including its computational abilities. The
information-pro cessingability of a single cell is often considerable,even if it is not a nerve cell (Holcombe
and Paton 1998),and it would be very good to understandit, particularly sinceit's soimportant in keeping
us alive.

The -transducerwould alsosene to constrain more corvertional models of the functional and chemical-
kinetic architecture of the network, things of the \this kinase phosphorylatesthat enzyme" type: the con-
ventional models would have to reproduce the behavior of the -transducer, would have to provide (in the
logical sense)models for it. But the constraint could also go the other way: given that we know a certain
functional pathway exists, it would be nice if our reconstruction algorithm could use that knowledge to
narrow its seard. | have no idea of how to implement such constraints, but it would make for an important
addition to the theory.'®

11.5.1.6 Agents

An agert, etymologically, is something which acts; in the lapidary formulation of Stuart Kau man, a \thing

which does things to things". From the point of view of computational mechanics, an agert is simply a
transducer. The input seriesrepresens the agert's ervironment; the output, the actions the agert takes.
Putting things this way doesnot imply that the agert is limited to simple stimulus-responsebehaviors; that
would imply a memorylesstransducer. Instead the agert cando arbitrarily complicated internal information
processing,all of it represeried by the internal states and connectionsof the -transducer®®. If an agert's
actions in uence the part of its ervironment to which it is sensitive (generally the case),then the feedbadk
states represent the e ects of its actions, its ability to make di erences to its ervironment. The problem
confronting an adaptive agert, or an agert designer,isn't somuch selectinggood actions, as selectingactions
which produce desirable causal states.

Saying that the agert has\an environment" does not mean that it will not, sometimes,be desirable
to explicitly represen the various parts of that environment, including, potentially, obsenable attributes
of other agerts. Reconstructing the -transducers from data for a population of interacting agerts would
allow us to infer the network of interactions among them, as well as the intrinsic computations that take
place within ead agert in its dealings with others. We might even be able to adapt the techniques of
spatial computational medcanics (Chapter 10) to characterize the glokal information-pro cessingcapabilities
of the population of agerts | their collective cognition (Shalizi 1998a) and other distributed adaptations
(Crutch eld, personalcommunication), and do soin impeccably materialist, individualist terms.

A simple example!” may make these abstractions a bit clearer. Consider an ant. At any given time,
it is performing one of a number of behaviors, which are readily obserned and categorized. In the course
of its activities, it moves about a varying physical environment, and comesinto contact with other ants,
performing other behaviors. From time to time, the ant switches behaviors. Take the state of the ant's
immediate physical environment, and the outward behavior of the ant it is currently dealing with (if any),
asthe input. The output is the manifest behavior of the ant. By treating it asa transducer, we seehow the

15 am grateful to Ary aman Shalizi for suggesting this application, and educating me about signal transduction.

18 Since a transducer is a channel with memory, an adaptiv e agert is a learning channel | a pun for which Jim Crutcheld is
solely responsible. Actually , -transducers very easily include the \op erator models" of psychological learning theory as special
cases(Bush and Mosteller 1955; Sternberg 1963; Holland 1990), but they can handle other modes of learning too, such as those
of Holland, Holyoak, Nisbett and Thagard (1986).

17Suggested by Michael Lachmann. Cf. Delgado and Sole (1997).
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ant's past history, physical environment, and dealings with other ants cortrol its task-switching. We could
also build transducers for all the other ants in the colony (perhaps by treating things like caste as xed
inputs), and ultimately composethem into the global -machine for the ant colony.

11.5.2 The Dynamics of Learning

Computational medanics sets limits on how well processesan be predicted, and shows how, at least in
principle, thoselimits canbe attained. -machinesare what any prediction method would build, if only they
could. But any learning problem which is formal and de nite enoughthat we can say whether or not it's
beensuccessfullysolved is also a prediction problem, or at least equivalent to one (Thornton 2000). So, in
a sense, -machines are also what ewvery learning method wants to build. Computational mecanics thus
has someimportant things to say about how well learning can succeedin di erent environments, and what
optimal learning looks like (Shalizi and Crutch eld 2000c).

Conversely when we try to reconstruct an -machine from actual data, we are engagingin a kind of
learning, or at least our code is. If we want to learn well, i.e., do reconstruction well, we needto take
into accourt results from learning theory about when and how learning is possible. | have already gestured
at someresults of this sort (for instance, claiming that constricting the spaceof possible models speeds
cornvergenceon the best one), but the literature has quantitativ e and powerful results. Unfortunately, most
of them assumeboth a xed mode of represertation (a xed model class)and [ID data. Developing a
guantitativ e learning theory for -machines, therefore, will mean extending statistical learning theory to
dependert data. The ultimate goal would be a theory of learning in a changing environment, where the
learner is itself a dynamical system| to understand the dynamics of learning, in Crutch eld's phrase.

Animals provethat this kind of learning is possible,and set a lower bound on how well it can be achieved:
anything a seaslug, a lorik eet, or a tenured professorcan do, a learning algorithm cando. What is not clear
is that any of them, even the most highly adapted of them'8, learns as well as possible,i.e. that any of
them attains the upper bound on learning ability, if there is one. To answer that question, we needtheory,
especially the kind of optimalit y theory computational medanicsis able to provide.

11.5.3 Phenomenological Engines

\Phenomenology", for physicists, is the study and modeling of phenomena,without much if any attempt
to get at underlying mecanisms®. An immenseamourt of what peopledo in applied science,engineering,
and related technical elds is basically phenomenology They needto make day-to-day predictions, but
either don't know the underlying mechanisms, or those mechanismsare too cumbersometo usefor practical
problems. Empirical regularities must take their place. Sometimesertire elds are dewoted to teasing
such regularities out of data; econoplysics, for instance, consists of little more than attempts to get the
phenomenologyof nancial time seriesright (Mantegna and Stanley 2000).

More respectably, phenomenologyis often a crucial preliminary to understanding mechanisms, since an
accurate knowledge of the phenomenaand their relations constraints mechanical models; the classic case
is the relationship between Mendelian and molecular genetics. The former is quite abstract, merely saying
that there are causalfactors, called genes,which in uence the obsenable traits of organismsand are passed,
in a certain manner, from parents to o spring. This is enoughto have very important consequencesfor
instance, most of ewolutionary genetics(Gillespie 1998), but it's quite mecanism-free;it is even compatible
with the assumptionthat geneticin uences are mediated by immaterial souls. Molecular geneticsprovides
all the grubby mechanical details missing from Mendelism and is in many casesmuch more accurate into
the bargain; but we were only led to it becauseit at least approximately ful lled Mendelian expectations.?°

18The seaslug.

19\Phenomenology" in philosophy also disdains mechanisms, but for entirely dieren t, and far lesscreditable, reasons(Husserl
1913/1931; Kolak owski 1975; Gellner 1974).

20The relationship between the abstract, structural theory and the mechanical one is somewhat lik e that between an axiom
system and one of its models in logic (Manzano 1990/1999), but not quite, becausethe abstract theory may only approximate
the more realistic one.
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| touched on this briey when consideringempirical applications above.

In computational medanics, we have an automatic method for doing phenomenology An -machine
reconstruction algorithm takesin data and givesbacdk a represenation of causalpatterns, suitable for usein
prediction or intervertion, \untouched by human hands". Sud an algorithm is a phenomenolgical engine
or phenomenolgimat?'. There is no in-principle reasonwhy they could not becomefast, reliable, standard
piecesof software, with potentially amusing and even important consequencesThey would spell the end of
on-line gambling and human weathermen;but also stock-market quants, biomedical statisticians, many sorts
of engineer,and routine medical diagnosticians’®>. Even data-analysts at high-energy physics experimernts
will nd it hard to justify their existence| oncea phenomenologimatgetswritten in Fortran.

21 Thanks to Jon Fetter for these names.
221t has been known for a long time that, in many areas, human clinical judgment is signican tly less accurate than the
results of simple linear decision rules (Dawes, Faust and Meehl 1989). Phenomenologimats could invade domains where linear

rules do not apply, but nonlinear ones do.



127

App endix A

Mathematical Review

A.1 Equiv alence Relations and Partitions

The following de nitions and properties are well-known, and may be found in almost any book on abstract
algebraor set theory.

De nition 52 (Equiv alence Relation) An equivalencerelation on a set A is a relation on A that is
re exive, symmetric and transitive:

Re exive: 8a2 A a a (A1)
Symmetric: 8a;b2 A (a b, (b a) (A.2)
Transitive: 8a;b;c2 A (a b~ ¢) (a ¢ (A.3)

De nition 53 (Equiv alence Class) An equivalenceclasse in A is a maximal sub-setof mutually equiv-
alent elements: for alla2 e, a bi b2 e The equivalene class containing a is sometimeswritten [a].
The collection of all equivalen@ classesinduced by in A is written A=

De nition 54 (P artition) A partition P of a setA is a classPg; P1;::: of mutually exclusiveand jointly
exhaustivesubsetsof A:

Mutually exclusive : 8Pi;P; 2 P Pi\ P = (A.4)
Jointly exhaustive: 8a2 A; 9P; 2 P a2 P (A.5)

The memiers of P are called the cells of the partition. If there is only one cell, the partition is trivial . If
each elementof A hasits own cell, the partition is the identity partition .
De nition 55 (Re nemen t) One partition P re nes another partition, Q, if each cell of P is a subsetof
a cell of Q:

8p2P 992Qst: p ¢ (A.6)
P is ner than Q; it is a re nement of Q; Q is coarserthan P.
Prop osition 3 (Equiv alence Relations and Partitions) For any equivalen relation  on A, the col-

lection of equivalen@ classesA= forms a partition of A. Conversely, every partition of A correspnds to
an equivalene relation.
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A.2 Information Theory

Information theory appearedin essetially its modern form with Shannon (1948), though there had been
predecessorsn both communications (Hartley 1928) and statistics, notably Fisher (see(Kullback 1968) for
an exposition of thesenotions), and similar ideaswere developed by Wiener and von Neumann, more or less
independertly of Shannon (Wiener 1961). Shannonand Weaver (1963) contains the classic papers; Pierce
(1961) is a decer popular treatment.

Appendix A.2.4 lists a number of useful information-theoretic formul, which get called upon in our
proofs. Throughout, our notation and style of proof follow thosein (Cover and Thomas 1991), the de nitiv e
modern reference.

A.2.1 Entropy De ned
Given a random variable X taking valuesin a courntable set A, the entropy of X is
X
H[X] P(X = x)log, P(X = X) ; (A7)
X2A

taking Olog0 = 0. Notice that H[X] is the expectation value of log, P(X = x) and is measuredin bits of
information. Caveats of the form \when the sum convergesto a nite value" are implicit in all statemerts
about the entropies of in nite countable setsA.

Shannoninterpreted H [X ] asthe uncertainty in X . (Those leery of any subjective componert in notions
like \uncertain ty" may read \e ectiv e variability" in its place.) He shaved, for example, that H[X] is the
mean number of yes-or-noquestionsneededto pick out the value of X on repeated trials, if the questions
are chosento minimize this average(Shannon 1948).

A.2.2 Joint and Conditional Entropies

We de ne the joint entropy H[X ;Y] of two variables X (taking valuesin A) and Y (taking valuesin B) in
the obvious way,

X
H[X;Y] PX=x;Y=y)log,P(X =x;Y =y): (A.8)
(xy)2AB

We de ne the conditional entropy H[X Y] of onerandom variable X with respect to another Y from their
joint entropy:

HIXjY] HIX;Y] HIY]: (A.9)

This also follows naturally from the de nition of conditional probability, sinceP(X = xjY = y) P(X =
X; Y = y)=P(Y = y). H[X]jY] measuresthe mean uncertainty remaining in X oncewe know Y.

A.2.3 Mutual Information
The mutual information | [X ;Y] betweentwo variablesis
1[X;Y] H[X] HI[XjY]: (A.10)

This is the averagereduction in uncertainty about X produced by xing Y. It is non-negative, like all
ertropies here, and symmetric in the two variables.
The conditional mutual information | [X;YjZ]is

1[X;YjZ] H[Xjz] HIXjY;Z]: (A.11)

It is alsonon-negative and symmetric in X and Y. It canbe larger or smaller than the unconditional mutual
information.
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A.2.4 Information-Theoretic Form ul

The following formul proveusefulin the developmert. They arerelatively intuitiv e, givenour interpretation,
and they canall be provedwith little morethan straight algebra;seeCover and Thomas (1991, ch. 2). Below,
f and g are functions.

HIX;Y] = H[X]+ H[YjX] (A.12)
HIX;Y] H[X] (A.13)
HX;Y] H[X]+ H[Y] (A.14)
HXjY] H[X] (A.15)
H[XjY]=H[X] i Xisindependert of Y (A.16)
HIX;Yjz] = H[XjZ]+ H[Y]X;Z] (A.17)
H[X;YjZ] H[XjZ] (A.18)
H[X] H[XjY] = H[Y] HIYjX] (A.19)
1[X;Y] H[X] (A.20)
I[X;Y]I=H[X] i H[XjY]=0 (A.21)
HI[f (X)] H[X] (A.22)
HIXjY]=0 i X =f(Y) (A.23)
HIf (X)jY] HIXjY] (A.24)

H X jf (Y)] H[XjY] (A.25)

LIf (X);9(Y)] X5 Y] (A.26)
L[ (X); 9(Y)iZ] 1[X;YjZ] (A.27)

Egs. A.12 and A.17 are called the chain rules for erntropies. Strictly speaking, the right hand side of Eq.
A.23 should read \for ead y, P(X = xjY = y) > 0 for oneand only one x".

A.3 Statistical Indep endence and Conditional Indep endence

De nition 56 (Statistical Indep endence) Two randomvariablesX andY are statistically independert
i their joint probability distribution factors:

PX=xY=y) = P(X =x)P(Y =Yy) (A.28)
or, equivalently, conditioning the one on the other makesno di er ence:

P(X = xjY = y) P(X = x) (A.29)
P(Y=yjX=x) = P(Y =Yy) (A.30)

The classictreatment of statistical independenceis Kac (1959).

Prop osition 4 (Statistical Indep endence and Mutual Information) (Cover and Thomas 1991, p.
27) X and Y are independenti I[X;Y]= 0.

Vitally important for our purposesis the derivative notion of conditional independence.

De nition 57 (Conditional Indep endence) Two random variables X ;Y are conditionally independert
given a third, Z, (or \independent given Z") if and only if

P(XjY;Z) = P(XjZ) (A.31)
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or, equivalently,
P(X;Yjz) = P(XjzZ)P(Y]jzZ) (A.32)
When this relation obtains, we write X.LYjZ.

Prop osition 5 (Conditional Indep endence and Mutual Information) (Cover and Thomas 1991, p.
27) X.LYjz i I1(X;Yjz)=0.

A.3.1 Prop erties of Conditional Indep endence

We list only those we need. Monographs on graphical models (Pearl 2000; Spirtes, Glymour and Scheines
2001) contain more extensiwe lists.

(ALLBjCD)~ (ALLD|CB) ) (ALBDjC) (A.33)
(ALBCjD) ) (ALBjCD) (A.34)
(ALBjC) " (ALLD|CB) ) (ALBDjC) (A.35)

Life would be much easierif

(ALB) ) (ALBjC) (A.36)

(ALLBjJC) ) (ALBjJCD) (A.37)

but sadly, neither of these implications holds in general; adding a conditional variable can make A and B
dependert again!

The following property, while not included in most lists of conditional independenceproperties, is of some
useto us:

(AILBJC) ) (AILf(B)jC)~ (A.LB;f (B)|C) (A.38)

for any measurable, nonrandom function f. It follows directly from the combination of Eq. A.27 and
Proposition 5.

There is an important connection between conditional independenceand statistical su ciency; seeAp-
pendix A.5 below.

A.4 Automata Theory

Denition 58 (Formal Language) A formal languagel over the nite alphalet is a subsetof [
the set of all possiblewords, or strings, made up of syminls from

De nition 59 (Determinism)  An automaton is deterministic or hasdeterministic transitions if, givenits
current state and its next input, there is only one possiblenext state for it.

This de nition often causesconfusion, since many stochastic automata (i.e., oneswith probabilistic transi-
tions) are deterministic in this sense.But it is too thoroughly entrenched in computer scienceto be changed.

De nition 60 (Deterministic ~ Finite Automaton) A deterministic nite automaton (DFA) M is de-
ned as a 5-tuple:

M=1fQ; ; ;q:Fg; (A.39)

where Q is a nite setof states, is an alphabet, gy 2 Q is the initial state, F Q is a setof nal states,
and :Q I Qs atransition function: (g;a) = o°, where g;q°2 Q and a2



131

A DFA can be usedto read, or scan,words w = wy :::w_ over the alphabet . Starting in the initial
state ¢, the DFA readsthe rst symbol w; of the word w. It then makes a transition to another state
q°= (go;w1). The DFA then readsthe next symbol w, and makesa transition to q°°= (g% ws,), and soon
until all symbols in w have beenread or until an unde ned transition is encourtered. If, after reading w,
the DFA endsin a nal state q2 F, M acceptsw; otherwise M rejects it.

Denition 61 (Regular Language) A regular languagel is a formal languagefor which there exists a
DFA that accepts all wordsin L and rejects all words not in L.

Regular languagesare the simplest classof formal languagesin a hierarchy (the Chomsky hierarchy) of
languageclassesof increasing complexity (Lewis and Papadimitriou 1998).

There are generallymany DFAs that recognizethe sameregular languagelL , but there is a unique minimal
DFA for L, which we write M (L). (For a nice proof of this proposition, see(Lewis and Papadimitriou 1998).)
Similarly, for every DFA M there is a corresponding regular languageL (M) consisting of all and only the
words that are acceptedby M .

De nition 62 (Regular Pro cess Language) A regular languageis a regular processlanguageif every
subwod of a word in L is alsoa word in L.

De nition 63 (Pro cess Graph) A DFA is a process graph if its every state is both an initial and an
accepting state.

The DFAs corresponding to regular processlanguagesare processgraphs, and vice versa (Hanson and
Crutch eld 1992).

De nition 64 (Finite State Transducer) A nite-state transducer (FST) is a nite automaton with two
kinds of symtol assaiated with each transition: inputs and outputs. An FST R is de ned by a 7-tuple:

R=fQ; in: ous ;s d:Fg; (A.40)

where Q; ;; and F are asin a DFA, |, is the input alphabet, oy is the output alphabet, and

Q in ! out IS the obsenation function: (g;a) = bwhere g2 Q,a2 j,,andb2 4. AnFST
e ectively implements a mapping fg from one languageover i, to another languageover o4 . In other
words, it readsawordw 2 ;, and transformsit to anotherword w®2 , by mappingeachsymiol w; 2 i,
to a symml w2 o, suchthat w®= (q;w;), where g2 Q is the current state of R whenreading w; .

In formal language theory, languagesand automata play the role of sets and transducers the role of
functions.

A.5 Sucien t Statistics

De nition 65 (A Statistic) Let X be a random variable taking valuesfrom X. Then a statistic T on
(or \over") X is any measurable, non-random function of X, i.e., T = f(X). To each statistic T there
correspnds a partition T of X.

Remark 1. It is commonto de ne the \same" statistic over any number of samplesX 1; X2;::: X, taken
in the same space,such as a stochastic process. For simplicity, what follows always writes X as a single
variable, but this should be kept in mind.

De nition 66 (Predictiv e Suciency) A statistic T over a random variable X is a su cient statistic
for predicting another randomvariableY i andonly if P(YT = f (x)) = P(YjX = x), 8x. If T is su cient,
then we also say that its asseiated partition T of X is su cient.
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Remark 1. Su ciency isimportant to prediction becauset canbe shown that, for any prediction method
which usesa non-su cien t statistic can be bettered by one which does. (A more precisestatemert can be
found in Appendix D below.)

Remark 2. Predictive su ciency is related to, but not identical with, the idea of parametric su ciency .
That, roughly, is when a statistic cortains all available information about the parameters of an unknown
distribution. That is, if the probability distribution is parameterized by , written P , a statistic T is
parametrically sucient if and only if P (XjT =1t) = P oXjT =t) forall ; % If itself can be regarded
as a random variable (as in de-noising, Bayesian statistics, etc.), then parametric and predictive su ciency
are identical.

Lemma 37 (Suciency and Conditional Indep endence) Consider two random variables X and Y,
and a statistic T on X. Then X ..LY|T if and only if T is sucient for predicting Y from X.

Proof. \Only if"; By conditional independence(Eq. A.31), P(YjX;T) = P(Y|T). But sinceT = f(X), by
Lemma 39 P(YjX;T) = P(YjX). (Informally, T is a \coarser" variable than X, so conditioning on T has
no e ect oncewe've conditioned on X.) SoP(Y|jT) = P(YjX), which meansT is sucien t. \If ": We start
with P(YjT) = P(YjX). As before,sinceT = f (X), P(YjX) = P(YjX;T). HenceP(Y|T) = P(YjX;T), so
(Eq. A.31), X .LLY|T. QED.

Prop osition 6 (Predictiv e Suciency and Mutual Information) (Cover and Thomas 1991, p. 37;
Kullback 1968, sec. 2.4{2.5) T is a su cient statistic over X for predicting Y if and only if I(Y;T) =
1(Y;X).

Denition 67 (Minimal Suciency) A statistic T is a minimal su cien t statistic for predicting Y from
X if and only if it is predictively su cient, and it is a function of every other su cient statistic.

Remark. If T is the partition corresponding to the minimal su cien t statistic T, then every other su cien t
partition Q must be a re nement of T. Turned around, no partition coarserthan T is su cien t.
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App endix B

Mathematical Annex to Chapter 4

B.1 Time Reversal

We canimagine forming reversecausal statesfor futures, basedon their conditional distribution of histories,
i.e., assigningtwo futures to the samestate if and only if they have the sameconditional distribution for
histories. While both the reverse states and the ordinary, forward onesrender the past and the future of
the processconditionally independen, there is no other general, systematic relationship betweenthe two of
them. The past and future morphs can be very di erent, and while both sets of causal states render past
and future conditionally independert, oneis a function of the past. In order to determine the reversecausal
state from the forward state, we must be able to determine the forward state from the future of the process;
to get the forward state from the reversestate, we must be able to determine the history uniquely from the
reversestate. If the forward and reversestates can both be inferred from ead other, sothat there is a kind
of time-reversal symmetry in the causalstates, then there must bea 1l 1 correspondencebetweenfutures
and histories. \

In general, C 6C (Crutcheld 1992), whereasthe entropy rates (Crutch eld and Shalizi 1999) and
excesserntropies must be equal. And soon.

B.2 -Mac hines are Monoids

A semi-group is a set of elemens closedunder an assaiative binary operator, but without a guarantee that
every, or indeed any, elemen has an inverse (Ljapin 1963). A monoid is a semi-group with an identit y
elemen. Thus, semi-groupsand monoids are generalizationsof groups. Just asthe algebraic structure of a
group is generally interpreted asa symmetry, we proposeto interpret the algebraic structure of a semi-group
asa geneanlized symmetry. The distinction betweenmonoidsand other semi-groupsbecomesmportant here:
only semi-groupswith an identity elemerni | i.e., monoids| can contain subsetsthat are groups and so
represen corvertional symmetries.

We claim that the transformations that concatenatestrings of symbols from A onto other such strings
form a semi-group G, the generatorsof which are the transformations that concatenatethe elemeris of A.
The identity elemen is to be provided by concatenating the null symbol . The concatenation of string t
onto the string s is forbidden if and only if strings of the form st have probability zeroin a process. All
such concatenationsare to be realized by a single semi-group elemen denoted ;. Sinceif P(st) = 0, then

P(stu) = P(ust) = 0 for any string u, we require that ;g = g; = ; for all g 2 G. Can we provide a
represenation of this semi-group?
Recall that, from our de nition of the labeled transition probabilities, Tij( ) = i . Thus, TO) is an

identit y elemen. This suggestsusing the labeled transition matrices to form a matrix represenation of the
semi-group. Accordingly, rst de ne Uifs) by setting U”(S) = 0 when Tij(s) = 0 and Uifs) = 1 otherwise, to
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S
remove probabilities. Then de ne the set of matricesU = fT()g fU() ;s2 Ag. Finally, de ne G asthe
set of all matrices generatedfrom the set U by recursive multiplication. That is, an elemen g of G is

g(ab:::cd) = U (d) U (c) U (b) U (a) : (B.l)

wherea;b;:::c;d 2 A. Clearly, G constitutes a semi-groupunder matrix multiplication. Moreover, g(&b9) =
0 (the all-zero matrix) if and only if, having emitted the symbols a:::bin order, we must arrive in a state
from which it is impossibleto emit the symbol c. That is, the zero-matrix 0 is generatedif and only if
the concatenation of c onto a:::bis forbidden. The elemen ; is thus the all-zero matrix 0, which clearly
satis es the necessaryconstraints. This completesthe proof of Proposition 9.

We call the matrix represenation | Eq. B.1 taken over all wordsin AX | of G the semi-goup machine
of the -machinefS;Tg (Young 1991).

B.3 Measure-Theoretic Treatment of Causal States

In Section 4.2, where we de ne causal states, -machines, and their basic properties, we use a great many
conditional probabilities. Howewer, there are times when the events on which we condition | particular
histories, or particular e ective states| have probability zero. Then classical formul for conditional
probability do not apply, and a more careful and technical treatment, going back to the measure-theoretic
basis of probability, is called for. That's what | do here, shawing that all the conceptswe sawv in Section
4.2 | the causalstates, their morphs, and so forth | are well-de ned measure-theoretically The proofs
in that section are equally valid whether we interpret the conditional probabilities they invoke classically
or measure-theoretically (The measure-theoreticinterpretation raisesa few technicalities, which we have
agged with footnotes to those proofs.) And we show herethat our methods of proof in subsequen sections
are not a ected by this changein interpretation.

In what follows, | draw on Billingsley (1965, Billingsley (1979), Doob (1953), Gray (1990), Loewve (1955),
and Rao (1993). | assumethat the readeris familiar with measure-theoreticprobability, at leastin some
basic way. The notation broadly follows that of Billingsley. A slightly dierent approad to theseissues,
and more than slightly di erent terminology and notation, may be found in chapter 2 of Upper (1997).

B.3.1 Abstract De nition of Conditional Probabilit y

De nition 68 (Conditional Probabilit y) Consider a prokability space ( ;F;P) anda -sulalgeba G
F. The conditional probability of an event A 2 F, given the family of eventsG, is a real-valued random
function Pajis (! ), with the following properties:

1. Pajic (! ) is measurable with respect to G; and

2. for any G 2 G,
z
Pajc (! )dP = P(A\ G) (B.2)
G

P
The latter condition generalizesthe classicalformula that P(A\ G) = 926 P(Ajo)P(9).

Prop osition 7 There alwaysexists a function Pajc (! ) satisfying the just-given conditions. Moreover, if f
and g are two functions which both satisfy the atove requirements,f (! ) = g(! ) for P-almost-all ! .

Proof: The existenceof such random variablesis vouchsafedto us by the Radon-Nikodym theorem; Ppjic (1)
is the Radon-Nikodym derivative of P(A\ G), which is a measureover G, with respectto P. (The latter
is alsorestricted to the -subalgebraG.) The Radon-Nikodym theorem also tells us that any two functions
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which satisfy the two conditions above agreefor P -almost-all points ! . Any sud function is called a version
of the conditional probability. (Seeany of the standard referencescited above for further details.)

If G= (X), the -algebrageneratedby the random variable X, then we may write Pajix =x(!) or
Pajix (1) in place of Ppjic (! ).

It is not always the casethat, if welet A vary, while holding ! xed, we geta proper probability measure.
Indeed, there are pathological exampleswhere there are no conditional probability measures,though there
are conditional probability functions. A conditional probability function which is a measurefor all ! is said
to be regular. If a regular conditional probability usesas its conditioning -algebrathat generatedby a
random variable X , we write P(jX = x), asusual.

B.3.1.1 Conditional Exp ectation

As well as conditional probabilities, we shall need conditional expectations. Their de nition is completely
analogousto De nition 68. The expectation of the random variable X condgional on the -sugalgebraG,
denoted E f X jjGg is an integrable, G-measurablerandom variable suc that  E fXjjGgdP = X dP for
all G 2 G. Conditional probabilities are, of course,the conditional expectations of indicator functions. There
is another important relationship betweenconditional probability and conditional expectation, which we give
in the form of another proposition.

Prop osition 8 (Coarsening Conditional Probabilit y) (Bil lingsley 1979; Doob 1953; Loeve 1955; Rao
1993) Consider any two -sulalgebas G and H, with G H. Then

Pajc(!) = E PajjiG (1) almost surely (a:s); (B.3)

where we have been explicit alout the conditional expectation's deendene on'! .

B.3.1.2 Conditional Indep endence

Let G be the conditioning -subalgebra,and let A and B be two other -subalgebras. Then A and B are
conditionally independent given G, just when, for any pair of events A;B, A2 A andB 2 B, Ppgjc(!) =
Paiic (! )Pgjc (1) as.

Take any two -algebrasover the sameset, A and B; their product, AB, is the -algebra generatedby
the setsof the form a\ b, wherea2 A and b2 B.

Prop osition 9 (Rao 1993, sec. 2.5) A and B are conditionally independent given Gi, for all B 2 B,
Peja (! ) = Pgjc (! ) a.e., wher AG is de ned as atove. This is alsotrue if A and B are interchangel.

Remark. Assuming regularity of conditional probability, this is equivalent to saying that the random
variables Y and Z are independent given X if and only if

PZ2AX=xY=y) = P(Z2AjX =Xx) (B.4)

Prop osition 10 (Loeve1955, p. 351) Assuming regularity of conditional prokability, for any three random
variables

P(Z2AY =yjX =Xx)
= P(Z2AjY =y; X =x)P(Y = yjX =X) (B.5)

Lemma 38 Let A = (X), and B = (f (X)), for a measurable, nonrandom function f. Then AB =
XGEX) = A= (X).

Proof. Sincef is measurable,every elemen of B is an element of A, though not necessarilythe reverse.
SinceA isa -algebra,it is closedunder intersection. Therefore AB ~ A. But for every a2 A, we can nd
ab2Bsudhthata b anda\ b= a ThusA AB. HenceA = AB. QED.
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Lemma 39 Letf be a measurable, nonrandom function of the random variable X . Then

Paiixit o) (1) = Pajx (1) aer; (B.6)

Proof. By Lemma 38, the conditioning -algebrason the left and right hand sidesare the same. QED.

B.3.2 Restatemen ts and Pro ofs of the Main Results

We begin by restating the de nition of causalequivalence,and soof causalstates,in terms adaptedto abstract
conditional probabilities. We then go through the results of Section4.2 in order and, where necessarygive
alternate proofs of them. (Where new proofs are not needed,we say s0.)

B.3.2.1 Denition of Causal States

For us, s the spaceof two-sidedin nite strings over A; F is the -algebrageneratedby cylinders over
such strings; and the probability measureP is simply P (De nition 9).

What we want to do is condition on histories; so we make our conditioning -subalgebra (S), following
the usual convention that (X) isthe -algebrainduced by the random variable X . This cortains all nite-
length historiles, and even all semi-in nite histories, as everts. Similarly, designellte the -subalgebra for

futures by (S). We want there to be a function PFJ_]_ (s)(! ), at leastwhenF 2 (S); and we want this to

!
be a probability measureover (S), for xed !.
As we have seen(Proposition 7), the conditional probability function exists. Moreover, it is regular, since
(S) is a subalgebraof the -algebra of cylinder sets,and S; always takesits valuesfrom a xed, nite set
(Doob 1953; Rao 1993).

!
Thus, we do have a random variable PFjj o s ('), which is the probability of the setF 2 (S), given

that S= s. We now de ne causalequivalencethus: s sO i, for P-almost all pairs!;! % if! 2 s and
102 SO, then PFJ_]_ o S(! ) = PFJ_]_ o So(! 9, for all F 2 (!S). (It is clear that this is an equivalencerelation
| in particular, that it is transitiv e.)

It may be comforting to point out (following Upper (1997, sec.2.5)) that the functions PFjj (SL)(! ),
i.e., the probabilities of the xed future event F conditional on longer and longer histories, almost always

corverge on PFjj (S)(! ). This is becauseof the martingale convergencetheorem of Doob (Doob 1953,

L L+1
Theorem VI1.4.3). Foreadh L, (S ) (S ) and the smallest —algebracorri%aining théem all is (9).
L
Thus, for any random variable X with EfjXjg< 1 ,lim_ iy E Xijj (S ) =E Xjj (S) almostsurely.

Applied to the indicator function 1r of the future event F, this givesthe desired corvergence.
Note that if we want only causalequivalencefor a nite future, matters are even simpler. Sincefor nite

1L
L every evert in (S ) consistsof the union of a nite number of disjoint elemenary ewverts (i.e., of a nite
number of length-L futures), it su ces if the conditional probability assignmeits agreefor the individual
futures. If they agreefor every nite L, then we have the alternate de nition (Eq. 4.11) of causal states.

B.3.2.2 Measurabilit y of

At sewral points, we need to be a measurablefunction, i.e., we need (S) (S). This is certainly the
casefor processeghat can be represernied as Markov chains, stochastic deterministic nite automata, or
convertional hidden Markov models generally The strongest general result yet obtained is that is, soto
speak, nearly measurable
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Prop osition 11 (Upper 1997, Prop. 2.5.3) For each causal state S;, the set (S;) of histories mapping
to S; is either measurable or the intersection of a measurable set and a set of full measure.

Thus, eah  (S;) diers from a measurablesetin (S) by at most a subsetof a set of measurezero.
This is closeenoughto complete measurability for our purposes,and we will speak of as though it were
always measurable. Finding necessaryand su cien t conditions on the processfor to be measurableis an
interesting problem.

B.3.2.3 The Morph

We wish to show that the morph of a causal state is well-de ned, i.e., that the distribution of futures
conditional on the ertire history is the sameas the distribution conditional on the causalstate. Start with
the fact that, sinceS = (S), and is nearly measurable, (S) (S). This lets us use Proposition 8, and
seethat Pgjs =g, (! ) is the expectation of PFJ_]_ o= s (!) overthose! 2 S;. But, by the construction of causal

states, PFjjS: S(! ) has the samevalue for P-almost-all ! . Thus P(FjS = S;) = P(Fj S= s) for (almost

every) s 2 S. (Wecanalways nd versionsof the conditional probabilities which eliminate the \almost-all"
and the \almost ewvery" above.) So, sincethis works for arbitrary future events F, it works in general,and
we may sa that the distribution of futures is the samewhether we condition on the past or on the causal
state.

B.3.2.4 Existence of the Conditional Entrop y of Futures
As we have seen,P!SL ) S(! ) is a probability measureover a nite set, so(Gray 1990,sec.5.5) we de ne the
i

ertropy of length-L futures conditional on a particular history s as

1 L
H[S j S= s] (B.7)
X 1L L. 1L L.
P(S =s"jS= s)log,P(S =s"jS=5s);
fstg
with the understandingthat we omit futures of conditional probabilit y zerofrom the sum. This is measurable,

1 L
sinceP(S = stj S= s)is (S)-measurablefor eac s-. Now set

1L z 1L
H[S j S] H[S j s= sldP_; (B.8)

where PS is the restriction of P to (S). (Measurability tells us that the integral exists.)

1 L
The procedurefor H[S jR] is similar, but if anything even lessproblematic.
Note that we do not needto re-do the derivations of Sections4.3 and 4.4, since those simply exploit
standard inequalities of information theory, which certainly apply to the conditional entropies we have just
de ned. (Cf. (Billingsley 1965;Gray 1990).)

B.3.2.5 The Labeled Transition Probabilities

Recall that we de ned the labeled transition probability Tij(s) as the probability of the joint event S°= S

11
and S = s, conditional on S = S;. Clearly (Proposition 7), the existenceof such conditional probabilities
is not at issue,nor, as we have seen,is their regularity. We can thus leave De nition 14 alone.
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B.4 Alternate Pro of of the Renemen t Lemma (Lemma 12)

The proof of Lemma 12 carries through verbally, but we do not wish to leave loop-holes. Unfortunately, this

meansintro ducing two new bits of mathematics.
1L

First of all, we needthe largest classesthat are strictly homogeneougDe nition 6) with respectto S
for xed L;theseare, soto speak, truncations of the causalstates. Accordingly, we will talk about S- and
L, which are analogousto S and . We will alsoneedto de ne the function - P(S-= LYjR = ).
Putting thesetogether, for every L we have

L L X L L
H[S jR=1 = H[ L P(s jst = )] (B.9)
f Llg
L H[s jst = L] (B.10)
flg
Thus,
P L X L L
H[S | R]= P(R= )H[S R =] (B.11)
f
X ’ X 1 L
P(R= ) L H[s jSt = '] (B.12)
f g f Llg
- PR= ) ' H[S jSt = ] (B.13)
fl;g
= P(S = ;R= H[S jst= '] (B.14)
fl,g
= 7 pst= LHH[sSt = '] (B.15)
f Llg
= H[s js']: (B.16)
That is to say,
HIS R HIs js‘: (B.17)

LL !
with equality if and only if every - is either 0 or 1. Thus, if H[S jli?] = H[S jSt], every b is entirely
cortained within some ‘; except for possiblesubsetsof measure0. But if this is true for every L | which,
in the caseof a prescient rival R, it is| then every b is at least weakly homogeneougDe nition 7) with

1L
respectto all S . Thus, by Lemma 7, all its members, except for that samesubsetof measure0, belongto
the samecausalstate. QED.

B.5 Finite Entropy for the Semi-In nite Future

1 1 L
While caseswhere H[S] is nite | more exactly, where lim_; H[S ] exists and is nite | may be
uninteresting for information-theorists, they are of great interest to physicists, sincethey correspond, among
other things, to periodic and limit-cycle behaviors. There are, however, only two substartial di erences
betweenwhat is true of the in nite-en tropy processesonsideredin the main body of the dewelopmert and
the nite-entropy case.
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1L !
First, we can simply replace statemerts of the form \for all L, H[S ]::: " with H[S]. IFor examp!e,the

optimal prediction theorem (Theorem 5) for nite-en tropy processedecomesfor all R, H[S jR] HI[S jS].
The details of the proofs are, however, ertirely analogous.
Second,we can prove a substartially stronger version of the Control Theorem (Theorem 11).

Theorem 25 (The Finite-Con trol Theorem) For all prescientrivals w,

H[s] H[sjR] C : (B.18)

Proof. By a direct application of Eq. A.20 and the de nition of mutual information, Eq. A.10, we have
that

H[S] H[sjS] H[S]: (B.19)

! !
But, by the de nition of prescien rivals (De nition 17),H[S jS]= H[S jli?], and, by de nition, C = H[S].
Substituting equalsfor equalsgivesus the theorem. QED.
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App endix C

Pro of of Lemma 20, Chapter 9

Recall the statemernt of Lemma 20

If a domain‘ ' has a periodic phase,then the domain is periodic, and the spatial periodicities S( }) of
all its phases |;j = 0;:::;p 1; are equal.

Proof. The proof consists of two parts. First, and most importantly, it is proved that the spatial
periodicities of the temporal phasesof a periodic domain ' cannot increaseand that the periodicity of
one phaseimplies the periodicity of all its successors.Then it follows straightforwardly that the spatial
periodicities have to be equal for all temporal phasesand that they all must be periodic.

Our proof employs the update transducer T , which is simply the FST which scansacrossa lattice
con guration and outputs the e ect of applying the CA update rule to it. For reasonsof space,we refrain
from giving full details on this operator | seerather (Hanson 1993). Here we needthe following results.
If is a binary, radius-r CA, the update transducer has 2%' states, represering the 22" distinct contexts
(words of previously read symbols) in which T scansnew sites, and we customarily label the statesby these
context words. The e ect of applying the CA  to a set of lattice con guration represered by the DFA M
is a new machine, givenby T M | the \direct product” of the machinesM and T . Onceagain, for reasons
of space,we will not explain how this direct product works in the generalcase. We are interested merely in
the special casewhere M = J' , the j ™, periodic phaseof a domain, with spatial period n. The next phase
of the domain, }+1 , is the composedautomaton T M, once the latter has been minimized. Beforethe latter
stepT M consistsof n \copies" of the FST T , onefor eat of ; 's n states. There are no transitions within
a copy. Transitions from copy k to copy k° occur only if k%= k+ 1 (mod n). In total, there are n2%" states
in the direct composition.

T M is nite and deterministic, but far from minimal. We are interested in its minimal equivalent
machine, sincethat is what we have de ned asthe represenativ e of the next phaseof the domain. The key
to our proof is an unproblematic part of the minimization, namely, removing statesthat have no predecessors
(i.e., no incoming transitions) and so are never reached. (Recall that, by hypothesis, we are examining
successie phasesof a domain, all represeried by strongly connected processgraphs.) It can be shown,
using the techniquesin Hanson (1993), that if the transition from state k in J' to state k + 1 occurson a
0 (respectively, on a 1), then in the composedmachine, the transitions from copy k of T only go to those
statesin copy k + 1 whosecontext string endsin a O (respectively, in a 1). Sincestatesin copy k+ 1 can be
reached only from statesin copy k, it follows that half of the statesin ead copy cannot be reached at all,
and sothey can be eliminated without loss.

Now, this procedureof eliminating states without direct predecessorsn turn leavessomestatesin copy
k + 2 without predecessors.So we can re-apply the procedure, and once again, it will remove half of the
remaining states. This is becauseapplying it twice is the sameas removing those states in copy k + 2 for
which the last two symbolsin the context word di er from the symbols connectingstate k to state k+ 1 and
state k + 1 to state k + 2 in the original domain machine } .

What this proceduredoesis exploit the fact that, in a domain, every state is encourtered only in a unique
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update-scanningcontext; we are eliminating combinations of domain-state and update-transducer-statethat
simply cannot be reached. Obserwe that we can apply this procedureexactly 2r times, sincethat su ces to
establishthe complete scanningcontext, and ead time we do so, we eliminate half the remaining states. We
are left then with n22r=2?" = n states after this processof successie halvings. Further obsene that, since
ead state k of the original domain machine J' occursin some scanningcontext, we will never eliminate all
the statesin copy k. Sinceead of the n copieshas at least one state left in it, and there are only n states
remaining after the halvings are done, it follows that ead copy contains exactly one state, which has one
incoming transition, from the previous copy, and one outgoing transition, to the next copy. The result of
eliminating unreachable states, therefore, is a machine of n states which is not just deterministic but (aswe
have de ned the term) periodic. Note, howewer, that this is not necessarily the minimal machine, sincewe
have not gonethrough a complete minimization procedure, merely the easy part of one. }+1 thus might
have fewer than n states, but certainly no more.
To sum up: We have establishedthat, if J' is a periodic domain phase,then }+1 is also periodic and
S( ) S( J') Thus, for any t, S( “) S( ) But ") = {,meap andif t = p, we have
(+tmodp = (j+pmodp = |- Putting thesetogether we have
S( ju) SC)) S ja)=S(]); (C.1)

forj = 0;1;:::;p 1. This implies that the spatial period is the same, namely n, for all phasesof the
domain. And this provesthe proposition when the CA alphabet is binary.

The reader may easily ched that a completely parallel argumert holds if the CA alphabet is not binary
but m ary, substituting m for 2and (m 1)=m for 1=2 in the appropriate places. QED.
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App endix D

Prescience, Suciency , and Optimal
Prediction

D.1 More General Notions of Predictiv e Power

In the precedingargumen, we measuredthe predictive power of a classof e ectiv e states by how much they
reducedthe entropy of the outputs. Thinking of entropy ase ectiv e variabilit y or uncertainty, this is not an
unreasonablemeasureof ability to predict, but in many applications it is customary and/or sensibleto use
other measures,and, in any case,it would be naturally to be a little leery of the causal statesif they were
optimal only as measuredby conditional ertropy. It is for this reasonthat we have paid such attention to
the statistical conceptof su ciency, sinceit lets us establish the predictive optimalit y of the causal states
in a much more generalsense.

Before we can do that, we needto introduce someconceptsfrom statistical decisiontheory (Blackwell
and Girshick 1954;Luce and Raia 1957;Lehmann and Casella1998).

D.2 Decision Problems and Optimal Strategies

De nition 69 (A Decision Problem) A decision problemconsists of the pair ; A, wher is arandom
variable (rangingover ) and A is someset. is called the sample or state of nature, and is suppsel to
representdata, observations,experimental results, etc. An a2 A is called an action, and the elementsof A
are supmseal to representdi er ent possiblerespnsesto the information atout the world representa in

Denition 70 (A Pure Strategy) A pure strategy is a function specifying a unique action for each state
of nature, f : 71 A. If f(1 1) = f(!,) whenever! ; and !, are in the samecell of a partition Z, we say
that the f dependson the correspnding random variable Z.

Denition 71 (A Randomized Strategy) A randomized strategy is a random function from states
of nature to actions. We write the probability of taking action a given sample! , under strategy , as
PA=a =!).fP(A=3a =1!31)=P (A=a =15,), forall a whenever! ; and!, arein the
samecell of the partition Z, we saythat dependson the correspnding random variable Z.

Given a set of randomized strategies, we can construct a set of pure strategiessud that ead randomized
strategy picks a pure strategy at random. Hencethe name\pure strategy"”.

De nition 72 (Utilit y of a Strategy) The utilit y of a strategy , is a functional from 's conditional
distribution of actions to the non-negative real numbers, parameterized by the state of nature: L(; !). It is
often by not necessarily written in terms of a lossfunction de ned for each action, L : A 7"R*.
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Remark 1. Perhapsthe two most common utilit y functionals are mean lossand maximum loss. Remark
2. Someauthors prefer to make large values of utilit y preferable to small ones; no matter of principle is
involved.

De nition 73 (Dominance among Strategies) Strategy dominates whenL(;!) L( ;!), for all
12

De nition 74 (Optimal Strategies) If a strategy dominatesall other strategies , then is called an
optimal strategy.

Remark. If the utilit y functional is the meanloss,then the optimal strategy is said to be a Bayesstrategy,
or a Bayesoptimal strategy, or simply to maximize expected utilit y. If the utilit y functional is the maximum
loss, then the optimal strategy is said to be minimax.

De nition 75 (Behaviorally Equiv alent Strategies) Two randomizel strategies ;; » are behavioally
equivalent if and only if they lead to the samedistribution of actions conditional on the state of nature, i.e.,
i P,(A=4a =1!)=P  ,(A=4a =1)foralla!.

De nition 76 (Behaviorally Equiv alent Strategy Sets) Two sets ; » is randomizeal strategies are
behaviorlly equivalenti each strategy in 1 is behaviorlly equivalent to at least one strategy in  », and
vice versa.

Remark. This is the sameasthe de nition of \equally informativ e" strategiesand statistics in Blackwell
and Girshick (1954, Def. 8.3.1). We avoid the use of the word \informativ €" here, since we do not want to
have to explain the relationship betweenthis conceptand those of information theory.

Prop osition 12 (Strategies Based on Sucien t Statistics) Given a set of randomizel strategies
which are functions of the state of nature, and a su cient statistic Z on , there is a behaviomlly equivalent
set of randomizel strategies , whereeach 2  dependsonly on Z. Conversely,if Z is a statistic, and for
any arbitrary set of randomizel strategies dependingon it is possibleconstruct a set  of randomizel
strategies depending only on Z which is behaviorlly equivalentto , then Z is a su cient statistic.

This is proved by Blackwell and Girshick (1954) astheir Theorem 8.3.2. Their proof is constructive. (See
their p. 218 for the conversepart of the theorem.) Seealso Lehmann and Casella(1998, ch. 1).

Remark. The gist of the lemma is that, whatever behavior you might want to get from strategieswhich
are sensitive to the whole of the state of nature, or to somearbitrary partition overit, you can get the same
behavior using strategies which are sensitive only to a su cien t statistic.

D.3 Prediction Problems and Optimal Prediction

Denition 77 (A Prediction Problem) Let A be the set of future behaviors of which the systemis ca-
pable. Then a strategy is a (possibly random) mapping from presentdata to future events,i.e., a prediction
methal. Let be the space of possible observations-to-date,and suppse that there is an optimal predic-
tion methad, ont which is a (possibly random) function of . Then we say that the decision problemis a
prediction problem.

Remark. The essetial parts of the de nition are that (1) the \state of nature" is a record of past
obsenations | in the caseof memorylesstransduction, the current input to the transducer| and (2) there
is an optimal predictor basedon that data.

Lemma 40 (General Predictiv e Optimalit y of Prescient States) Let o be the optimal predictor

for a given prediction problem, and let ® be a class of prescient states for that process. Then there is a
behaviomlly equivalent, and so equally optimal, predictor, , which dependsonly on R.
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Proof. We simply apply Proposition 12 with = f g Q.

Lemma 41 (Generally Predictiv ely Optimal States Are Prescient) If, for any prediction problem
on P, one can construct an optimal predictor which depndsonly on R, then R is prescient.

Proof. We simply considerthe prediction problem implicit in the preceding developmert, the optimal
(minimal-conditional-entropy) solutionsto which all, by construction, involve presciert states. By hypothesis,
we can make an optimal predictor, in this sense,using R, soR must be prescien.

Theorem 26 (Gener al Predictive Optimality and Minimality of Causal States) The causalstates
are geneally predictively optimal, and if R is geneally predictively optimal, then it is a re nement almost
everywhee of S.

Proof. The rst part of the theorem, the predictive optimalit y of the causalstates, is a direct application of
Lemma40, sincethe causalstatesare prescien. Second,weknow from Lemmad41lthat generally-predictively-
optimal states are prescient, and from the Re nement Lemma (12) that presciert states are re nements a.e.
of the causalstates. Or, put di erently, the generally-predictive statesare su cien t statistics, and the causal
states are the minimal su cien t statistics, sothe secondpart of the theorem follows from Lemma 3 (in its
various avatars) as well.
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