Point Processes
29 Jun 2023 09:53
Yet Another Inadequate Placeholder
- See also:
- Empirical Process Theory
- Neural Modeling and Data Analysis
- Random Time Changes for Stochastic Processes
- Recurrence Times of Stochastic Processes
- Stochastic Processes
- Time Series
- Recommended (big picture):
- Most good general books on stochastic processes cover at least simple point processes; I can particularly recommend Bartlett, Grimmett and Stirzaker, and Kallenberg
- Recommended (close-ups):
- David Brillinger
- "Remarks concerning graphical models for time series and point processes," Revista de Econometria 16 (1996): 1--23
- "Second-order moments and mutual information in the analysis of time series and point processes," Proceedings of the Conference Statistics 2001 Canada [online]
- "Nerve Cell Spike Train Data Analysis: A Progression of Technique," Journal of the American Statistical Association 87 (1992): 260--270
- Emery N. Brown, Robert E. Kass and Partha P. Mitra, "Multiple Neural Spike Train Data Analysis: State-of-the-art and Future Challanges", Nature Neuroscience 7 (2004): 456--461 [PDF reprint via Rob]
- Vanessa Didelez, "Graphical models for marked point processes based on local independence", arxiv:0710.5874
- Shinsuke Koyama and Shiegeru Shinomoto, "Empirical Bayes interpretations of random point events", Journal of Physics A: Mathematical and General 38 (2005): L531--L537
- Patrick J. Laub, Thomas Taimre, Philip K. Pollett, "Hawkes Processes", arxiv:1507.02822
- Brad Leun and Philip B. Stark, "Testing Earthquake Predictions", pp. 302--315 in Deborah Nolan and Terry Speed (eds.), Probability and Statistics: Essays in Honor of David A. Freedman (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008)
- Alex Reinhart, "A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications", arxiv:1708.02647
- Alex Reinhart and Joel Greenhouse, "Self-exciting point processes with spatial covariates: modeling the dynamics of crime", Journal of the Royal Statistical Society C 67 (2018): 1305--1329, arxiv:1708.03579
- To read:
- E. Bacry, K. Dayri, J. F. Muzy, "Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data", arxiv:1112.1838
- Emmanuel Bacry, Jean-Francois Muzy, "Second order statistics characterization of Hawkes processes and non-parametric estimation", arxiv:1401.0903
- Adrian Baddeley et al., Spatial Point Patterns: Methodology and Applications with R
- Jérémie Bigot, Sébastien Gadat, Thierry Klein, and Clément Marteau, "Intensity estimation of non-homogeneous Poisson processes from shifted trajectories", Electronic Journal of Statistics 7 (2013): 881--931
- Adrian A. Budini, "Large deviations of ergodic counting processes: a statistical mechanics approach", Physical Review E 84 (2011): 011141, arxiv:1112.2625
- Zhiyi Chi, "Large deviations for template matching between point processes", Annals of Applied Probability 15 (2005): 153--174, math.PR/0503463
- Remy Chicheportiche, Anirban Chakraborti, "A model-free characterization of recurrences in stationary time series", arxiv:1302.3704
- Luca Citi , Demba Ba , Emery N. Brown and Riccardo Barbieri, "Likelihood Methods for Point Processes with Refractoriness", Neural Computation 26 (2014): 237--263
- Jean‐François Coeurjolly Frédéric Lavancier, "Residuals and goodness‐of‐fit tests for stationary marked Gibbs point processes", Journal of the Royal Statistical Society B 75 (2013): 247--276
- Forrest W. Crawford, Daniel Zelterman, "Markov counting models for correlated binary responses", arxiv:1305.1656
- Serguei Dachian, Yury A. Kutoyants
- "Hypotheses Testing: Poisson Versus Self-exciting", Scandinavian Journal of Statistics 33 (2006): 391, arxiv:0903.4636
- "On the Goodness-of-Fit Tests for Some Continuous Time Processes", arxiv:0903.4642 ["We present a review of several results concerning the construction of the Cramer-von Mises and Kolmogorov-Smirnov type goodness-of-fit tests for continuous time processes. As the models we take a stochastic differential equation with small noise, ergodic diffusion process, Poisson process and self-exciting point processes"]
- Justin Dauwels, Theophane Weber, Francois Vialatte, Toshimitsu Musha and Andrzej Cichocki, "Quantifying Statistical Interdependence, Part III: N > 2$ Point Processes", Neural Computation 24 (2012): 408--454
- Moritz Deger, Moritz Helias, Stefano Cardanobile, Fatihcan M. Atay, Stefan Rotter, "Non-equilibrium dynamics of stochastic point processes with refractoriness", arxiv:1002.3798
- Peter J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns
- Michael Eichler, Rainer Dahlhaus and Johannes Dueck, "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions", Journal of Time Series Analysis 38 (2017): 225--242
- Seth Flaxman, Daniel Neill, Alex Smola, "Correlates of homicide: new space/time interaction tests for spatiotemporal point processes", Heinz College (CMU) Tech Report 409
- Seth Flaxman, Yee Whye Teh, Dino Sejdinovic, "Poisson intensity estimation with reproducing kernels", arxiv:1610.08623
- Yongtao Guan, Abdollah Jalilian, Rasmus Waagepetersen, "Quasi-likelihood for Spatial Point Processes", Journal of the Royal Statistical Society B 77 (2015): 677--697, arxiv:1303.0188
- Eric C. Hall, Rebecca M. Willett, "Tracking Dynamic Point Processes on Networks", IEEE Transactions on Information Theory 62 (2016), arxiv:1409.0031
- Niels Richard Hansen
- "Penalized maximum likelihood estimation for generalized linear point processes", arxiv:1003.0848
- "Nonparametric likelihood based estimation of linear filters for point processes", arxiv:1304.0503
- David Harte, "PtProcess: An R Package for Modelling Marked Point Processes Indexed by Time", Journal of Statistical Software 35 (2010): 8
- Matthew T. Harrison, Asohan Amarasingham and Wilson Truccolo, "Spatiotemporal Conditional Inference and Hypothesis Tests for Neural Ensemble Spiking Precision", Neural Computation 27 (2015): 104--150
- Janine Illian, Antti Penttinen, Helga Stoyan, Dietrich Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns
- Sanja Janicevic, Lasse Laurson, Knut Jorgen Maloy, Stephane Santucci, and Mikko J. Alava, "Interevent Correlations from Avalanches Hiding Below the Detection Threshold", Physical Review Letters 117 (2016): 230601
- Alex Kulesza, Ben Taskar, "Determinantal point processes for machine learning", Foundations and Trends in Machine Learning 5 (2012): 123--286, arxiv:1207.6083
- T. Kuna, J. L. Lebowitz and E. R. Speer, "Realizability of point processes", math-ph/0612075
- Charles Loeffler, Seth Flaxman, "Is Gun Violence Contagious?", arxiv:1611.06713
- Gert Nieuwenhuis, "Asymptotic mean stationarity and absolute continuity of point process distributions", Bernoulli 19 (2013): 1612--1636, arxiv:1312.2726
- Christopher J. Paciorek, "Spatial models for point and areal data using Markov random fields on a fine grid", Electronic Journal of Statistics 7 (2013): 946--972
- Georgia Papadogeorgou, Kosuke Imai, Jason Lyall, Fan Li, "Causal Inference with Spatio-temporal Data: Estimating the Effects of Airstrikes on Insurgent Violence in Iraq", arxiv:2003.13555
- Gordon J Ross, Tim Jones, "Understanding the Heavy Tailed Dynamics in Human Behavior", arxiv:1505.01547
- Catalin V. Rusu and Razvan V. Florian, "A New Class of Metrics for Spike Trains", Neural Computation 26 (2014): 306--348
- David Schnoerr, Ramon Grima, Guido Sanguinetti, "Cox process representation and inference for stochastic reaction-diffusion processes", Nature Communications 7 (2016): 11729, arxiv:1601.01972
- Dominic Schuhmacher, Aihua Xia, "A new metric between distributions of point processes", arxiv:0708.2777
- Victor Solo and Syed Ahmed Pasha, "Point-Process Principal Components Analysis via Geometric Optimization", Neural Computation 25 (2013): 101--122
- Wilson Truccolo, John P. Donoghue, "Nonparametric Modeling of Neural Point Processes via Stochastic Gradient Boosting Regression", Neural Computation 19 (2007): 672-705
- Ke Zhou, Hongyuan Zha, Le Song, "Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes", AISTATS 2013
- Lingjiong Zhu, "Nonlinear Hawkes Processes", arxiv:1304.7531