Large Deviations
02 Oct 2024 10:19\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \]
The limit theorems of probability theory --- the weak and strong laws of large numbers, the central limit theorem, etc. --- basically say that averages taken over large samples (of well-behaved independent, identically distributed random variables) converge on expectation values. (The strong law of large numbers asserts almost-sure convergence, the central limit theorem asserts a kind of convergence in distribution, etc.) These results say little or nothing about the rate of convergence, however, which is often important for many applications of probability theory, e.g., statistical mechanics. One way to address this is the theory of large deviations. (I believe the terminology that follows goes back to Varadhan in the 1970s, but that's just an impression, rather than research.)
Let me say things sloppily first, so the idea comes through, and then more
precisely, so people who know the subject won't get too upset. Suppose \( X \)
is a random variable with expected value \( \Expect{X} \), and we consider \(
S_n \equiv \frac{1}{n}\sum_{i=1}^{n}{X_i} \), the sample mean of \( n \)
independent, identically-distributed draws of \( X \). \( S_n \) obeys
a large deviations principle if there is a non-negative function \( r
\), the rate function, such that
\[
\Prob{\left(\left| \Expect{X} - S_n \right| \geq \epsilon\right)}
\rightarrow e^{-nr(\epsilon)} ~.
\]
(The rate function has to obey some sensible but technical continuity
conditions.) This is a large deviation result, because the difference
between the empirical mean and the expectation is remaining constant as \( n \)
grows --- there has to be a larger and large conspiracy, as it were, among the
samples to keep deviating from the expectation in the same way. Now, one
reason what I've stated isn't really enough to satisfy a mathematician is that
the right-hand side converges on zero, so the functional form of the
probability could be anything which also converges on zero and that'd be
satisfied, but we want to pick out exponential convergence. The usual
way is to look at the limiting decay rate of the probability. Also, we want
the probability that the difference between the empirical mean and the
expectation falls into any arbitrary set. So one usually sees the LDP asserted
in some form like, for any reasonable set \( A \),
\[
\lim_{n\rightarrow\infty}{-\frac{1}{n}\log{ \Prob{ \left|
\Expect{X} - S_n \right| \in A}}} = \inf_{x\in A}{r(x)} ~.
\]
(Actually, to be completely honest, I really shouldn't be assuming
that there is a limit to those probabilities. Instead I should connect the lim
inf of that expression to the infimum of the rate function over the interior of
\( A \), and the lim sup to the infimum of the rate function over the closure of
\( A \).)
Similar large deviation principles can be stated for the empirical distribution, the empirical process, functionals of sample paths, etc., rather than just the empirical mean. There are tricks for relating LDPs on higher-level objects, like the empirical distribution over trajectories, to LDPs on lower-level objects, like empirical means. (These go under names like "the contraction principle".)
Since ergodic theory extends the probabilistic limit laws to stochastic processes, rather than just sequences of independent variables, it shouldn't be surprising that large deviation principles also hold for some stochastic processes. I am particularly interested in LDPs for Markov processes, and their applications. There are further important connections to information theory, since in an awful lot of situations, the large deviations rate function is the Kullback-Leibler divergence, a.k.a. the relative entropy.
Closely related, but strictly speaking distinct topics:
- Finite-sample deviation inequalities, such as the Bernstein, Chernoff and Hoeffding inequalities, which bound the probability of averages departing by more than a certain amount from expectation values at given finite sample sizes \( n \);
- Concentration of measure, roughly speaking finite-\( n \) upper bounds on deviation probabilities holding uniformly over large classes of functions. In contrast, large deviations principles give matching upper and lower bounds, but only for the exponential rate, and only asymptotically as \( n \rightarrow \infty \).
- See also:
- Calculus of Variations and Optimal Control Theory
- Convergence of Stochastic Processes
- Cumulants, and Cumulant Generating Functions
- Exponential Families of Probability Measures
- Information Theory, Large Deviations, and Statistics
- Laplace Approximation
- Maximum entropy
- Random Matrix Theory
- Recommended, big picture:
- James Bucklew, Large Deviation Techniques in Decision, Simulation, and Estimation
- Thomas Cover and Joy Thomas, Elements of Information Theory [Very nice chapter on large deviations for IID sequences]
- Amir Dembo and Ofer Zeitouni, Large Deviations Techniques and Applications
- Frank den Hollander, Large Deviations [My favorite introductory text]
- Richard S. Ellis
- "The Theory of Large Deviations: from Boltzmann's 1877 Calculation to Equilibrium Macrostates in 2D Turbulence", Physica D 133 (1999): 106--136
- Entropy, Large Deviations, and Statistical Mechanics<
- M. I. Friedlin and A. D. Wentzell, Random Perturbations of Dynamical Systems
- Hugo Touchette, "The Large Deviations Approach to Statistical Mechanics", Physics Reports 478 (2009): 1--69, arxiv:0804.0327
- S. R. S. Varadhan, "Large Deviations", Annals of Probability 36 (2008): 397--419, arxiv:0804.2330
- Recommended, close-ups:
- F. Altarelli, A. Braunstein, L. Dall'Asta, and R. Zecchina, "Large deviations of cascade processes on graphs", Physical Review E 87 (2013): 062115, arxiv:1305.5745 [Comments]
- Michael Assaf and Baruch Meerson, "WKB theory of large deviations in stochastic populations", Journal of Physics A: Mathematical and Theoretical 50 (2017): 263001, arxiv:1612.01470
- R. R. Bahadur, Some Limit Theorems in Statistics
- Julien Barré, Freddy Bouchet, Thierry Dauxois and Stefano Ruffo, "Large deviation techniques applied to systems with long-range interactions", cond-mat/0406358 = Journal of Statistics Physics 119 (2005): 677--713
- Michel Benaïn and Jörgen W. Weibull, "Deterministic Approximation of Stochastic Evolution in Games", Econometrica 71 (2003): 879--903 [JSTOR]
- Daniel Berend, Peter Harremoës, Aryeh Kontorovich, "Minimum KL-divergence on complements of L1 balls", arxiv:1206.6544
- Christian Borgs, Jennifer Chayes and David Gamarnik, "Convergent sequences of sparse graphs: A large deviations approach", arxiv:1302.4615 [See under graph limits]
- Arijit Chakrabarty, "Effect of truncation on large deviations for heavy-tailed random vectors", arxiv:1107.2476
- Sourav Chatterjee and S. R. S. Varadhan, "The large deviation principle for the Erdos-Renyi random graph", arxiv:1008.1946 [See under Graph Limits]
- J.-R. Chazottes and D. Gabrielli, "Large deviations for empirical entropies of Gibbsian sources", math.PR/0406083 = Nonlinearity 18 (2005): 2545--2563 [This is a very cool result which shows that block entropies, and entropy rates estimated from those blocks, obey the large deviation principle even as one lets the length of the blocks grow with the amount of data, provided the block-length doesn't grow too quickly (only logarithmically). I wish I could write papers like this.]
- W. De Roeck, Christian Maes and Karel Netocny, "H-Theorems from Autonomous Equations", cond-mat/0508089 [this basically derives the H-theorem of statistical mechanics as a large deviations result, assuming a certain reasonable Markovian form for the macroscopic dynamics. In fact, we have a separate argument that you don't have that Markovian form, you're just not trying hard enough; see here]
- Paul Dupuis, "Large Deviations Analysis of Some Recursive Algorithms with State-Dependent Noise", Annals of Probability 16 (1988): 1509--1536
- Paul Dupuis and Richard S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations
- Gregory L. Eyink
- "Action principle in nonequilbrium statistical dynamics," Physical Review E 54 (1996): 3419--3435 [Least action as a consequence of Markovian LDP]
- "A Variational Formulation of Optimal Nonlinear Estimation," physics/0011049 [Nice connections between optimal state estimation (assuming a known form for the underlying stochastic process), nonequilibrium statistical mechanics, and large deviations theory, leading to tractable-looking numerical schemes for estimation.]
- Jin Feng and Thomas G. Kurtz, Large Deviations for Stochastic Processes
- Vera Melinda Galfi, Valerio Lucarini, Francesco Ragone, Jeroen Wouters, "Applications of large deviation theory in geophysical fluid dynamics and climate science", La Rivista del Nuovo Cimento 44 (2021): 291--363, arxiv:2106.13546 [Comments]
- Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur, "Simulating rare events in dynamical processes", Journal of Statistical Physics 145 (2011): 787--811, arxiv:1106.4929
- R. L. Kautz
- "Activation energy for thermally induced escape from a basin of attraction", Physics Letters A 125 (1987): 315--319
- "Thermally induced escape: The principle of minimum available noise energy", Physical Review A 38 (1988): 2066--2080
- Vivien Lecomte and Julien Tailleur, "A numerical approach to large deviations in continuous time", Journal of Statistical Mechanics: Theory and Experiment 2007: P03004
- Alberto Montfusco, Dynamic Coarse-Graining via Large-Deviation Theory [Doctoral thesis, ETH Zurich, 2019]
- C. M. Newman, J. E. Cohen and C. Kipnis, "Neo-darwinian evolution implies punctuated equilibria", Nature 315 (1985): 400--401
- J.-H. Niemann, S. Winkelmann, S. Wolf, C. Schütte, "Agent-based modeling: Population limits and large timescales", Chaos 31 (2021): 033140
- Enzo Olivieri and Maria Eulalia Vares, Large Deviations and Metastability
- Steven Orey and Stephan Peliken, "Large deviations principles for stationary processes", Annals of Probability 16 (1988): 1481--1495
- Francesco Ragone, Jeroen Wouters and Freddy Bouchet, "Computation of extreme heat waves in climate models using a large deviation algorithm", Proceedings of the National Academy of Sciences115 (2017): 24--29, arxiv:1709.03757
- Eric Smith, "Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions", arxiv:1102.3938
- Eric Smith and Supriya Krishnamurthy, "Symmetry and Collective Fluctuations in Evolutionary Games", SFI Working Paper 11-03-010
- Hugo Touchette, "Asymptotic equivalence of probability measures and stochastic processes", arxiv:1708.02890
- To read, applications to Markov processes:
- Paul H. Algoet and Brian H. Marcus, "Large Deviation Theorems for Empirical Types of Markov Chains Constrained to Thin Sets," IEEE Transactions on Information Theory 38 (1992): 1276--1291
- To read, applications to interacting particle systems:
- Alexei Andreanov, Giulio Biroli, Jean-Philippe Bouchaud, and Alexandre Lefèvre, "Field theories and exact stochastic equations for interacting particle systems", Physical Review E 74 (2006): 030101, cond-mat/0602307
- L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, "Large deviation approach to non equilibrium processes in stochastic lattice gases", arxiv:math/0602557
- Amarjit Budhiraja, Paul Dupuis, Markus Fischer, "Large deviation properties of weakly interacting processes via weak convergence methods", arxiv:1009.6030
- Amarjit Budhiraja, Paul Dupuis, Vasileios Maroulas, "Large deviations for infinite dimensional stochastic dynamical systems", Annals of Applied Probability 36 (2008): 1390--1420, arxiv:0808.3631
- To read, applications to dynamical systems and statistical mechanics:
- Abdelhamid Amroun, "Equilibrium states for smooth maps", arxiv:1004.2577
- To read, general theory, including computational methods:
- David Andrieux, "Equivalence classes for large deviations", arxiv:1208.5699
- J. Barral and P. Goncalves, "On the Estimation of the Large Deviations Spectrum", Journal of Statistical Physics 144 (2011): 1256--1283
- Patrick Cattiaux and Nathael Gozlan, "Deviations bounds and conditional principles for thin sets", arxiv:math/0510257
- Luke Causer, Mari Carmen BaƱuls, and Juan P. Garrahan, "Optimal sampling of dynamical large deviations via matrix product states", Physical Review E 103 (2021): 062144
- Po-Ning Chen, "Generalization of Gartner-Ellis theorem", IEEE Transactions on Information Theory 46 (2000): 2752--2760
- A. de Acosta, "A general nonconvex large deviation result II", Annals of Probability 32 (2004): 1873--1901, math.PR/0410101
- Grégoire Ferré, "A subexponential version of Cramer's theorem", arxiv:2206.05791
- Cristian Giardina, Jorge Kurchan, Luca Peliti, "Direct evaluation of large-deviation functions", cond-mat/0511248
- Te Sun Han, "An information-spectrum approach to large deviation theorems", cs.IT/0606104
- Yuri Kifer, S. R. S. Varadhan, "Nonconventional Large Deviations Theorems", Probability Theory and Related Fields 158 (2014): 197--224, arxiv:1206.0156
- Brian R. La Cour, William C. Schieve, "A General Conditional Large Deviation Principle", Journal of Statistical Physics 161 (2015): 123--130, arxiv:2104.12024
- Christian Léonard , "Entropic Projections and Dominating Points", ESAIM: Probability and Statistics 14 (2010): 343--381, arxiv:0711.0206 ["Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers"]
- David McAllester, "A Statistical Mechanics Approach to Large Devations Theorems" [E-print available via CiteSeer --- published?]
- To read, scientific applications:
- Ellen Baake, Frank den Hollander and Natali Zint, "How T-Cells Use Large Deviations to Recognize Foreign Antigens", arxiv:q-bio.SC/0605016 [Presumably == the paper of the same title in Journal of Mathematical Biology 57 (2008): 841--861, but that orders the authors Zint, Baake and den Hollander.]
- To read, applications to random graphs and to networks:
- Christian Borgs, Jennifer Chayes, Julia Gaudio, Samantha Petti, Subhabrata Sen, "A large deviation principle for block models", arxiv:2007.14508
- Hanshuang Chen, Feng Huang, Guofeng Li, Haifeng Zhang, "Large deviation and anomalous fluctuations scaling in degree assortativity on configuration networks", arxiv:1907.13330
- Jihyeok Choi and Sunder Sethuraman, "Large deviations for the degree structure in preferential attachment schemes", Annals of Applied Probability 23 (2013): 722--763
- Andreas Engel, Remi Monasson and Alexander K. Hartmann, "On Large Deviation Properties of Erdos-Renyi Random Graphs", Journal of Statistical Physics 117 (2004): 387--426
- Jan Grebik, Oleg Pikhurko, "Large deviation principles for graphon sampling", arxiv:2311.06531
- Rajat Subhra Hazra, Frank den Hollander, Maarten Markering, "Large deviation principle for the norm of the Laplacian matrix of inhomogeneous Erdos-Renyi random graphs", arxiv:2307.02324
- Anatolii A. Puhalskii, "Stochastic processes in random graphs", math.PR/0402183
- Clara Stegehuis, Bert Zwart, "Large deviations for triangles in scale-free random graphs", arxiv:2303.09198
- To read, applications to stochastic differential equations and stochastic integrals:
- Alberto Chiarini, Markus Fischer, "On large deviations for small noise Ito processes", Advances in Applied Probability 46 (2014): 1126--147, arxiv:1212.3223
- Peipei Gao, Yong Liu, Yue Sun, Zuohuan Zheng, "Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise", arxiv:2206.02356
- Jorge Garcia, "A Large Deviation Principle for Stochastic Integrals", Journal of Theoretical Probability 21 (2008): 476--501
- Alice Guionnet, "Large deviations and stochastic calculus for large random matrices", Probability Surveys 1 (2004): 72--172
- Wei Wang, A. J. Roberts and Jinqiao Duan, "Large deviations for slow-fast stochastic partial differential equations", arxiv:1001.4826
- To read, large deviation and quantum mechanics:
- Igor Bjelakovic, Jean-Dominique Deuschel, Tyll Krueger, Ruedi
Seiler, Rainer Siegmund-Schultze and Arleta Szkola
- "A quantum version of Sanov's theorem", Communications in Mathematical Physics 260 (2005): 659--671, quant-ph/0412157
- "Typical support and Sanov large deviations of correlated states", Communications in Mathematical Physics 279 (2008): 559--584, math.PR/0703772
- K. Netocny and F. Redig, "Large deviations for quantum spin systems", Journal of Statistical Physics 117 (2004): 521--547, math-ph/0404018
- To read, not otherwise, or not yet, classified:
- Matthias Birkner, Andreas Greven and Frank den Hollander, "Quenched large deviation principle for words in a letter sequence", arxiv:0807.2611
- Adrian A. Budini, "Large deviations of ergodic counting processes: a statistical mechanics approach", Physical Review E 84 (2011): 011141, arxiv:1112.2625
- Raphaël Cerf and Pierre Petit, "Cramér's theorem for asymptotically decoupled fields", arxiv:1103.4415 [The English abstract is extremely interesting, but unfortunately
this paper is in French, so my marking it "to read" is
delusionalaspirational.] - Arijit Chakrabarty, "Central Limit Theorem and Large Deviations for truncated heavy-tailed random vectors", arxiv:1003.2159
- Zhiyi Chi
- "Large deviations for template matching between point processes", Annals of Applied Probability 15 (2005): 153--174 = math.PR/0503463
- "On the asymptotic of likelihood ratios for self-normalized large deviations", arxiv:0709.1506
- Igor Chueshov and Annie Millet, "Stochastic 2D hydrodynamical type systems: Well posedness and large deviations", arxiv:0807.1810
- Zach Deitz and Sunder Sethuraman, "Large deviations for a class of nonhomgeneous Markov chains", math.PR/0404230
- Frank den Hollander, Julien Poisat, "Large deviation principles for words drawn from correlated letter sequences", arxiv:1303.5383
- B. Derrida, "Non equilibrium steady states: fluctuations and large deviations of the density and of the current", cond-mat/0703762
- B. Derrida, Joel L. Lebowitz and Eugene R. Speer, "Exact Large Deviation Functional for the Density Profile in a Stationary Nonequilibrium Open System," cond-mat/0105110
- Manh Hong Duong, Mark A. Peletier, Upanshu Sharma, "Coarse-graining and fluctuations: Two birds with one stone", arxiv:1404.1466
- Vlad Elgart and Alex Kamenev, "Rare Events Statistics in Reaction--Diffusion Systems", cond-mat/0404241 [i.e., large deviations]
- Mikhail Ermakov, "A moderate deviation principle for empirical bootstrap measure", arxiv:1206.1459
- Parisa Fatheddin, Jie Xiong, "Large Deviation Principle for Some Measure-Valued Processes", arxiv:1204.3501
- Shui Feng, "Large Deviations For Randomly Weighted Sums of Random Measures", arxiv:2106.12493
- Mario Filiasi, Giacomo Livan, Matteo Marsili, Maria Peressi, Erik Vesselli, Elia Zarinelli, "On the concentration of large deviations for fat tailed distributions, with application to financial data", arxiv:1201.2817
- Hans Follmer and Steven Orey, "Large Deviations for the Empirical Field of a Gibbs Measure", Annals of Probability 16 (1988): 961--977
- Yuri Golubev, Vladimir Spokoiny, "Exponential bounds for minimum contrast estimators", arxiv:0901.0655
- Nathael Gozlan and Christian Léonard
- "A large deviation approach to some transportation cost inequalities", math.PR/0510601
- "Transport inequalities. A survey", arxiv:1003.3852
- O. V. Gulinskii and R. S. Liptser, "Example of Large Deviations for Stationary Processes", Theory of Probability and Applications 44 (1999): 211--225 [PDF]
- Henrik Hult and Gennady Samorodnitsky, "Large deviations for point processes based on stationary sequences with heavy tails", Journal of Applied Probability 47 (2010): 1--40
- Svante Janson, "Large deviations for sums of partly dependent random variables", Random Structures and Algorithms 24 (2004): 234--248 ["We use and extend a method by Hoeffding to obtain strong large deviation bounds for sums of dependent random variables with suitable dependency structure. The method is based on breaking up the sum into sums of independent variables. Applications are given to U-statistics, random strings and random graphs." Applied here only to Erdos-Renyi (IID) random graphs, but might be extendable to Markov random graphs...? PDF preprint]
- Giovanni Jona-Lasinio, "From fluctuations in hydrodynamics to nonequilibrium thermodynamics", arxiv:1003.4164
- Vladislav Kargin, "A Large Deviation Inequality for Vector Functions on Finite Reversible Markov Chains", math.PR/0508538
- Gerhard Keller, Equilibrium States in Ergodic Theory
- Michael Keyl, "Quantum state estimation and large deviations", quant-ph/0412053
- Yuri Kifer, "Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging", arxiv:0710.2405
- F. Klebaner and R. Liptser, "Large Deviations for Past-Dependent Recursions", math.PR/0603407 [Corrected version of Problems of Information Transmission 32 (1996): 23--34]
- Ioannis Kontoyiannis and S. P. Meyn
- "Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes", Electronic Journal of Probability 10 (2005): 61--123, math.PR/0509310
- "Spectral Theory and Limit Theorems for Geometrically Ergodic Markov Processes", Annals of Applied Probability 13 (2003): 304--362, math.PR/0209200
- "Computable exponential bounds for screened estimation and simulation", Annals of Applied Probability 18 (2008): 1491--1518, arxiv:math/0612040
- Christian Kuehn, Martin G. Riedler, "Large Deviations for Nonlocal Stochastic Neural Fields", Journal of Mathematical Neuroscience 4 (2014): 1--33, arxiv:1302.5616
- D. Lacoste, A. W. C. Lau and K. Mallick, "Fluctuation theorem and large deviation function for a solvable model of a molecular motor", Physical Review E 78 (2008): 011915
- Vivien Lecomte, Cécile Appert-Rolland, and
Frédéric van Wijland
- "Thermodynamic formalism for systems with Markov dynamics", cond-mat/0606211
- "Thermodynamic formalism and large deviation functions in continuous time Markov dynamics", cond-mat/0703435
- Raphael Lefevere, Mauro Mariani, Lorenzo Zambotti, "Large deviations for renewal processes", arxiv:1009.2659
- Robert Sh. Liptser and Anatolii A. Pukhalskii, "Limit theorems on large deviations for semimartingales", math.PR/0510028 [But published in a journal in 1992]
- Fotis Loukissas, "Precise Large Deviations for Long-Tailed Distributions", Journal of Theoretical Probability 25 (2012): 913--924
- Valerio Lucarini, Vera Melinda Galfi, Gabriele Messori, Jacopo Riboldi, "Typicality of the 2021 Western North America Summer Heatwave", arxiv:2206.06197
- Yutao Ma, Ran Wang, Liming Wu, "Moderate Deviation Principle for dynamical systems with small random perturbation", arxiv:1107.3432
- Claudio Macci, "Large Deviations for Empirical Estimators of the Stationary Distribution of a Semi-Markov Process with Finite State Space", Communications in Statistics: Theory and Methods 37 (2008): 3077--3089
- Claudio Macci, Mauro Piccioni, "An inverse Sanov theorem for exponential families", arxiv:2111.14152
- Satya N. Majumdar and Alan J. Bray, "Large-Deviation Functions for Nonlinear Functionals of a Gaussian Stationary Markov Process", Physical Review E 65 (2002): 051112, cond-mat/0202138
- Kevin McGoff, Sayan Mukherjee, Andrew Nobel, "Gibbs posterior convergence and the thermodynamic formalism", arxiv:1901.08641
- Kevin McGoff, Sayan Mukherjee, Andrew Nobel, Natesh Pillai, "Consistency of maximum likelihood estimation for some dynamical systems", Annals of Statistics 43 (2015): 1--29, arxiv:1306.5603
- Thomas Mikosch, Olivier Wintenberger, "Precise large deviations for dependent regularly varying sequences", arxiv:1206.1395
- Abdelkader Mokkadem, Mariane Pelletier and Baba Thiam, "Large and moderate deviations principles for kernel estimators of the multivariate regression", math.ST/0703341
- Ouassim Feliachi, Freddy Bouchet, "Dynamical large deviations for homogeneous systems with long range interactions and the Balescu--Guernsey--Lenard equation", arxiv:2105.05644
- Magda Peligrad, Hailin Sang, Yunda Zhong, Wei Biao Wu, "Exact Moderate and Large Deviations for Linear Processes", arxiv:1111.0537
- Huyen Pham, "Some applications and methods of large deviations in finance and insurance",math.PR/0702473
- Mark Pollicott and Richard Sharp, "Large Deviations, Fluctuations and Shrinking Intervals", Communications in Mathematical Physics 290 (2009): 321--334
- Anatoly Puhalskii, Large Deviations and Idempotent Probability
- Hong Qian, "Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and Nonequilibrium Deviations", Physical Review E 63 (2001): 042103, math-ph/0007010
- Olivier Rivoire, "The cavity method for large deviations", Journal of Statistical Mechanics: Theory and Experiment (2005): P07004, cond-mat/0506164 ["A method is introduced for studying large deviations in the context of statistical physics of disordered systems. The approach, based on an extension of the cavity method to atypical realizations of the quenched disorder, allows us to compute exponentially small probabilities (rate functions) over different classes of random graphs."]
- David Ruelle, Thermodynamic Formalism
- Shin-ichi Sasa, "Physics of Large Deviation", arxiv:1204.5584
- L. Saulis and V. A. Statulevicius, Limit Theorems for Large Deviations
- Carolyn Schroeder, "I-Projection and Conditional Limit Theorems for Discrete Parameter Markov Processes", Annals of Probability 21 (1993): 721--758
- Adam Shwartz, Large Deviations in Performance Modeling
- Joe Suzuki, "A Markov chain analysis of genetic algorithms: large deviation principle approach", Journal of Applied Probability 47 (2010): 967--975
- Hiroki Takahasi, "Level-2 Large Deviation Principle for Countable Markov Shifts Without Gibbs States", Journal of Statistical Physics 190 (2023): 120
- Hugo Touchette, Rosemary J. Harris, "Large deviation approach to nonequilibrium systems", arxiv:1110.5216
- José Trashorras, Olivier Wintenberger, "Large deviations for bootstrapped empirical measures", arxiv:1110.4620
- A. Vulpiani, F. Cecconi, M. Cencini, A. Puglisi and D. Vergni (eds.)m Large Deviations in Physics: The Legacy of the Law of Large Numbers
- Lingjiong Zhu, "Process-Level Large Deviations for General Hawkes Processes", arxiv:1108.2431
- To write:
- CRS, "Large Deviations in Exponential Families of Stochastic Automata"
- CRS, "Large Deviations for Markovian Compartment Models and Related Population Processes"
Previous versions: 2005-11-09 17:39 (but not the first version by any means)