Books to Read While the Algae Grow in Your Fur, December 2018
Attention
conservation notice: I have no taste. I also have no qualifications
to discuss poetry or leftist political theory. I do know something about
spatiotemporal data analysis, but you don't care about that.
- Gidon Eshel, Spatiotemporal Data Analysis
- I assigned this as a textbook in my fall class
on data over space and time,
because I need something which covered spatiotemporal data analysis, especially
principal components analysis, for students who could be taking linear
regression at the same time, and was cheap. This met all my requirements.
- The book is divided into two parts. Part I is a review or crash course in
linear algebra, building up to decomposing square matrices in terms of their
eigenvalues and eigenvectors, and then the singular value decomposition of
arbitrary matrices. (Some prior acquaintance with linear algebra will help,
but not very much is needed.) Part II is about data analysis, covering some
basic notions of time series and autocorrelation, linear regression models
estimated by least squares, and "empirical orthogonal functions", i.e.,
principal components analysis, i.e., eigendecomposition of covariance or
correlation matrices. As for "cheap", while the list price is (currently) an
outrageous \$105, it's on
JSTOR, so The Kids had free access to the PDF through the
university library.
- In retrospect, there were strengths to the book, and some serious
weaknesses --- some absolute, some just for my needs.
- The most important strength is that Eshel writes like a
human being, and not a bloodless textbook. His authorial persona is not
(thankfully) much like mine, but it's a likeable and enthusiastic one. This is
related to his trying really, really hard to explain everything as simply as
possible, and with multitudes of very detailed worked examples. I will
probably be assigning Part I of the book, on linear algebra, as refresher
material to my undergrads for years.
- He is also very good at constantly returning to physical insight to
motivate data-analytic procedures. (The highlight of this, for me, was section
9.7 [pp. 185ff] on when and why an autonomous, linear, discrete-time AR(1) or
VAR(1) model will arise from a forced, nonlinear, continuous-time dynamical
system.) If this had existed when I was a physics undergrad, or starting grad
school, I'd have loved it.
- Turning to the weaknesses, some of them are, as I said, merely ways in
which he didn't write the book to meet my needs. His implied reader
is very familiar with physics, and not just the formal, mathematical parts but
also the culture (e.g., the delight in complicated compound units of
measurement, saying "ensemble" when other disciplines say "distribution" or
"population"). In fact, the implied reader is familiar with, or at least
learning, climatology. But that reader has basically no experience with
statistics, and only a little probability (so that, e.g., they're not familiar
with rules for algebra with expectations and covariances*). Since my audience was undergraduate and masters-level
statistics students, most of whom had only the haziest memories of high school
physics, this was a mis-match.
- Others weaknesses are, to my mind, a bit more serious, because they
reflect more on the intrinsic content.
- A trivial but real one: the book is printed in black and white, but many
figures are (judging by the text) intended to be in color, and are scarcely
comprehensible without it. (The first place this really struck me was p. 141
and Figure 9.4, but there were lots of others.) The electronic version is no
better.
- The climax of the book (chapter 11) is principal components analysis.
This
is really, truly
important, so it deserves a lot of treatment. But it's not a very satisfying
stopping place: what do you do with the principal components once you have
them? What about the difference between principal components / empirical
orthogonal functions
and factor models?
(In the book's terms, the former does a low-rank approximation to the sample
covariance matrix $\mathbf{v} \approx \mathbf{w}^T \mathbf{w}$, while the
latter treats it as low-rank-plus-diagonal-noise $\mathbf{v} \approx
\mathbf{w}^T\mathbf{w} + \mathbf{d}$, an importantly different thing.) What
about nonlinear methods of dimensionality reduction? My issue isn't so much
that the book didn't do everything, as that it didn't give readers even hints
of where to look.
- There are places where the book's exposition is not very internally
coherent. Chapter 8, on autocorrelation, introduces the topic with an example
where $x(t) = s(t) + \epsilon(t)$, for a deterministic signal function
$s(t)$ and white noise $\epsilon(t)$. Fair enough; this is a trend-plus-noise
representation. But it then switches to modeling the autocorrelations as
arising from processes where $x(t) = \int_{-\infty}^{t}{w(u) x(u) du} +
\xi(t)$, where again $\xi(t)$ is white noise. (Linear autoregressions are the
discrete-time analogs.)
These are distinct classes of processes. (Readers will find it
character-building to try to craft a memory kernel $w(u)$ which matches the
book's running signal-plus-noise example, where $s(t) =
e^{-t/120}\cos{\frac{2\pi t}{49}}$.)
- I am all in favor of physicists' heuristic mathematical sloppiness,
especially in introductory works, but there are times when it turns into mere
confusion. The book persistently conflates time or sample averages with
expectation values. The latter are ensemble-level quantities, deterministic
functionals of the probability distribution. The former are random variables.
Under various laws of large numbers or ergodic theorems, the
former converge on the latter, but they are not the same.
Eshel knows they are not the same, and sometimes talks about
how they are not the same, but the book's notation persistently writes
them both as $\langle x \rangle$, and the text sometimes flat-out identifies
them. (For one especially painful example among many, p. 185.) Relatedly, the
book conflates parameters (again, ensemble-level quantities, functions of the
data-generating process) and estimators of those parameters (random
variables)
- The treatment of multiple regression is unfortunate.
$R^2$ does
not measure goodness of fit. (It's not even a measure of how well the
regression predicts or
explains.) At some level, Eshel knows this, since his recommendation for
how to pick regressors is not "maximize $R^2$". On the other hand, his
prescription for picking regressors (sec. 9.6.4, pp.180ff) is rather painful to
read, and completely at odds with his stated rationale of using regression
coefficients to compare alternative explanations (itself a bad, though common,
idea). Very strikingly, the terms "cross-validation" and "bootstrap" do not
appear in his index**. Now, to be clear,
Eshel isn't worse in his treatment of regression that most
non-statisticians, and he certainly understands the algebra backwards
and forwards. But his advice on the craft of regression is, to be
polite, weak and old-fashioned.
- Summing up, the linear-algebra refresher/crash-course of Part I is great,
and I even like the principal components chapters in Part II, as far as they
go. But it's not ideal for my needs, and there are a bunch of ways I think it
could be improved for anyone's needs. What to assign instead,
I have no idea.
- *: This is, I think, why he
doesn't explain the calculation of the correlation time and effective
sample size in sec. 8.2 (pp. 123--124), just giving a flat statement of the
result, though it's really easy to prove with those
tools. I do appreciate finally learning the origin of this beautiful and
practical result --- G. I. Taylor, "Diffusion by Continuous
Movements", Proceedings
of the London Mathematical Society, series 2, volume 20 (1922),
pp. 196--212 (though the book's citing it with the wrong year, confusing series number with an issue number, and no page numbers was annoying).
^
- **: The absence of "ridge
regression" and "Tikhonov regularization" from the index is all the more
striking because they appear in section 9.3.3 as "a more general, weighted,
dual minimization formalism", which, compared to ordinary least squares, is
described as "sprinkling added power ... on the diagonal of an otherwise
singular problem". This is, of course, a place where it would be really
helpful to have a notion of cross-validation, to decide how much to
sprinkle.^
- Nick Srnicek and Alex Williams, Inventing the Future: Postcapitalism and a World Without Work
- It's --- OK, I guess? They have some good points against what they call
"folk politics", namely, that it has conspicuously failed to accomplish
anything, so doubling down on more of it seems like a bad way to change the
world. And they really want to change the world: the old
twin goals of increasing human power over the world, and eliminating human
power of other humans, are very much still there, though they might not quite
adopt that formula. To get there, their basic idea is to push for a "post-work
world", one where people don't have to work to survive, because
they're entitled to a more-than-subsistence basic income as a matter of right.
They realize that making that work will require lots of
politics and pushes for certain kinds of technological progress rather
than others. This is the future they want --- to finally enter (in
Marx's words) "the kingdom of freedom", where we will be able to get on with
all the other problems, and possibilities, confronting us.
- As for getting there: like a long, long line of leftist intellectuals from
the 1960s onwards, Srnicek and Williams are very taken with the idea, going
back to Gramsci, that the key to achieving socialism is to first achieve
ideological "hegemony". To put it crudely, this means trying to make your idea
such broadly-diffused, widely-accepted, scarcely-noticed common notions that
when madmen in authority channel voices from the air, they
channel you. (In passing: Occupy may have done nothing to reduce
economic inequality, but Gramsci's success as a strategist may be measured by
the fact that he wrote
in a Fascist prison.) Part of this drive for hegemony is pushing for
new ideas in economics --- desirable in itself, but they are sure in advance of
what inquiry should find *. Beyond this, and
saying that many tactics will need to be tried out by a whole "ecology" of
organizations and groups, they're pretty vague. There's some wisdom here ---
who could propound a detailed plan to get to post-work
post-capitalism? --- but also more ambiguity than they acknowledge. Even if a
drive for a generous basic income (and all that would go with it) succeeds, the
end result might not be anything like the sort of post-capitalism Srniceck and
Williams envisage, if only because what we learn and experience along the way
might change what seems feasible and desirable. (This is a Popperian point
against Utopian plans, but it can be put in other language quite
easily**.) I think Srnicek and
Williams might be OK with the idea that their desired future won't be
realized, so long as some better future is, and that the important
point is to get people on the left not to prefigure better worlds in occasional
carnivals of defiance, but to try to make them happen. Saying that doing this
will require organization, concrete demands, and leadership is pretty sensible,
though they do disclaim trying to revive the idea of a vanguard party.
- Large portions of the book are, unfortunately, given over to insinuating,
without ever quite saying, that post-work is not just desirable and possible,
but a historical necessity to which we are impelled by
the inexorable
development of capitalism, as foreseen by the Prophet. (They also
talk about how Marx's actual scenario for how capitalism would develop, and
end, not only has not come to pass yet, but is pretty much certain to never
come to pass.) Large portions of the book are given over to wide-ranging
discussions of lots of important issues, all of which, apparently, they grasp
through the medium of books and articles published by small, left-wing presses
strongly influenced by post-structuralism --- as it were, the world viewed
through the Verso Books catalog. (Perry Anderson had the important advantage,
as a writer and thinker, of being formed outside the rather hermetic
subculture/genre he helped create; these two are not so lucky.) Now, I
recognize that good
ideas usually
emerge within a community that articulates its own distinctive
tradition, so some insularity can be all to the good. In this case, I am not
all that far from the authors' tradition, and sympathetic to it. But still,
the effect of these two (overlapping) writerly defects is that once the book
announced a topic, I often felt I could have written the subsequent passage
myself; I was never surprised by what they had to say. Finishing this was a
slog.
- I came into the book a mere Left Popperian and market socialist, friendly
to the idea of a basic income, and came out the same way. My mind was not
blown, or even really changed, about anything. But it might encourage
some leftist intellectuals to think constructively about the future,
which would be good.
- Shorter: Read Peter
Frase's Four
Futures instead.
- *: They are quite confident
that modern computing lets us have an efficient planned economy, a conclusion
they support not be any technical knowledge of the issue but by citations to
essays in literary magazines and collections of humanistic scholarship. As I
have said before, I wish that were the case, if only because it would be
insanely helpful for my own work,
but I think that's just wrong.
In any case, this is an important point for socialists, since it's
very consequential for the kind of socialism we should pursue. It
should be treated much more seriously, i.e., rigorously and knowledgeable, than
they do. Fortunately, a basic income is entirely compatible
with market socialism, as are other measures to ensure that people
don't have to sell their labor power in order to live.
- **: My own two-minute stab at making chapter 9
of The Open Society and Its Enemies sound suitable for New
Left Review: "The aims of the progressive forces, always multifarious,
develop dialectically in the course of the struggle to attain them. Those aims
can never be limited by the horizon of any abstract,
pre-conceived telos, even one designated 'socialism', but will always
change and grow through praxis." (I admit "praxis" may be a bit
dated.) ^
- A. E. Stallings, Like: Poems
- Beautiful stuff from one of my favorite contemporary poets. "Swallows" and
"Epic Simile" give a fair impression of what you'll find. This also
includes a lot of the poems discussed in Cynthia Haven's "Crossing Borders" essay.
Books to Read While the Algae Grow in Your Fur;
Enigmas of Chance;
Data over Space and Time;
The Progressive Forces;
The Commonwealth of Letters
Posted at December 31, 2018 23:59 | permanent link